Aufgabe Referenznummer erstellen
Man gebe für die Ringe der zweidimensionalen ADE-Singularitäten jeweils eine Primidealkette der Länge an.
Aufgabe Referenznummer erstellen
Man gebe für den Ring eine Primidealkette der Länge an.
Aufgabe Referenznummer erstellen
Sei ein kommutativer Ring von endlicher Krulldimension . Zeige, dass die Krulldimension des Polynomrings mindestens ist.
Aufgabe Referenznummer erstellen
Betrachte . Die Nullstellenmenge besteht aus dem einzigen Punkt , durch die eine Gleichung geht also die Dimension von auf runter. Warum widerspricht das nicht dem Krullschen Hauptidealsatz?
Aufgabe Referenznummer erstellen
Es sei ein Körper und ein Punktideal im Polynomring. Zeige, dass die Höhe von gleich ist.
Aufgabe * Aufgabe 19.6 ändern
Es sei ein Körper und ein maximales Ideal im Polynomring. Zeige, dass es eine endliche Körpererweiterung und ein Punktideal
derart gibt, dass
ist.
Aufgabe Referenznummer erstellen
Begründe, dass endlich ist. Wie sieht es über bzw. aus?
Aufgabe Referenznummer erstellen
Begründe, dass endlich ist. Wie sieht es über bzw. aus?
Aufgabe Aufgabe 19.9 ändern
Es sei eine endliche Ringerweiterung und ein Nichtnullteiler. Zeige, dass nicht das Nullideal ist.
Aufgabe Referenznummer erstellen
Es sei ein kommutativer Ring. Zeige, dass eine endliche Ringerweiterung ist und dass die Restklasse nicht ist, dass aber das Nullideal ist.
Aufgabe Referenznummer erstellen
Aufgabe Referenznummer erstellen
- Zeige, dass
endlich ist.
- Zeige, dass und algebraisch unabhängige Elemente in sind.
- Bestimme für die beiden minimalen Primideale und die Durchschnitte mit .
Aufgabe Referenznummer erstellen
Zeige durch ein Beispiel, dass Korollar 19.8 nicht gilt, wenn man beliebige Nenneraufnahmen erlaubt.
Aufgabe Referenznummer erstellen
Zeige durch ein Beispiel, dass Korollar 19.8 nicht gilt, wenn man Algebren betrachten, die nicht vom endlichen Typ sind.
Aufgabe Referenznummer erstellen
Es sei ein noetherscher lokaler Ring und ein endlich erzeugter -Modul der Dimension . Zeige, dass der Limes
existiert und mit der Hilbert-Samuel-Multiplizität von übereinstimmt.