- Charakteristikum unendlicher Mengen
- Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
- Verkettungen: Assoziativgesetz der Hintereinanderausführung
- Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
- Deskriptive Mengenlehre: Satz von Young
- Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen
- Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
- Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn
Satz
Ist eine Menge von Ordinalzahlen, so ist eine Ordinalzahl.
Beweis
Verwendet wird
Sei eine Menge von Ordinalzahlen und . Aus folgt für eine Ordinalzahl . Dann ist auch , also auch . Mithin ist transitiv. Jedes Element von ist Element einer in liegenden Ordinalzahl und daher laut (1) wiederum eine Ordinalzahl. Als Menge von Ordinalzahlen ist laut (2) durch wohlgeordnet. Folglich ist eine Ordinalzahl.
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.