< Lineare Abbildung < Trigonalisierbar < Charakterisierungen < 1
Charakterisierung von trigonalisierbaren Abbildungen

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist trigonalisierbar.
  2. Es gibt eine -invariante Fahne.
  3. Das charakteristische Polynom zerfällt in Linearfaktoren.
  4. Das Minimalpolynom zerfällt in Linearfaktoren.

Wenn trigonalisierbar ist und bezüglich einer Basis durch die Matrix beschrieben wird, so gibt es eine invertierbare Matrix (es sei ) derart, dass eine obere Dreiecksmatrix ist.

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.