- Schwerpunktsätze von Leibniz
- Planimetrie
- Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Japanischer Satz für konzyklische Vierecke · Satz des Thales
- Rechtwinkliges Dreieck: Satz des Pythagoras
- Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
- Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
- Dreieck: Satz des Heron · Berechnung des Flächeninhalts des Diagonalendreiecks im Quader · Elementarer Satz zur Charakterisierung des Schwerpunkts im Dreieck via Flächeninhalte
- Inzidenzgeometrie ·
- Trigonometrie

Additionstheoreme (Sinus)
Beweis für:
Im rechtwinkligen Dreieck ist
(1)
Im rechtwinkligen Dreieck ist
(2)
und
(3)
Im rechtwinkligen Dreieck ist
(4.1)
(3) eingesetzt
(4.2)
(4.3)
Dreiecke und sind beide rechtwinkelig
und daher:
(5.0)
Im rechtwinkligen Dreieck gilt:
(5.1)
(2) eingesetzt
(5.2)
(5.3)
(6.1)
(4.3) und (5.3) eingesetzt
(6.2)
in (1) eingesetzt
(7)
Wenn Winkel negativ:
(8)
(9a)
und
(9b)
eingesetzt in (8)
(10)
(7) und (10) zusammengefasst
(11)
Additionstheoreme (Sinus)
Beweis für
Für den Beweis werden die Beziehungen
verwendet.
Es gilt:
Die Umformung zum vorletzten Schritt ist zulässig, da entweder oder auftritt.
- Schwerpunktsätze von Leibniz
- Planimetrie
- Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Japanischer Satz für konzyklische Vierecke · Satz des Thales
- Rechtwinkliges Dreieck: Satz des Pythagoras
- Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
- Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
- Dreieck: Satz des Heron · Berechnung des Flächeninhalts des Diagonalendreiecks im Quader · Elementarer Satz zur Charakterisierung des Schwerpunkts im Dreieck via Flächeninhalte
- Inzidenzgeometrie ·
- Trigonometrie
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.