- Schwerpunktsätze von Leibniz
- Planimetrie
- Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Japanischer Satz für konzyklische Vierecke · Satz des Thales
- Rechtwinkliges Dreieck: Satz des Pythagoras
- Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
- Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
- Dreieck: Satz des Heron · Berechnung des Flächeninhalts des Diagonalendreiecks im Quader · Elementarer Satz zur Charakterisierung des Schwerpunkts im Dreieck via Flächeninhalte
- Inzidenzgeometrie ·
- Trigonometrie
Sehnentangentenwinkelsatz
Der Sehnentangentenwinkel eines Kreisbogens ist so groß wie der zugehörigen Umfangswinkel (Peripheriewinkel) und halb so groß wie der zugehörige Mittelpunktswinkel (Zentriwinkel).

Sehnentangentenwinkel
Nachweis, dass der Sehnentangentenwinkel gleich dem Umfangswinkel ist:
(Siehe Skizze)
Der Mittelpunktswinkel ist doppelt so groß wie der Umfangswinkel (siehe weiter oben):
Winkelsumme im gleichschenkligen :
Sehnentangentenwinkel:
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.