< Kurs:Funktionentheorie

Aussage

Es sei ein Gebiet und eine holomorphe, nicht konstante Funktion. Dann ist ein Gebiet.

Beweis

Bei Satz von der Gebietstreue muss man zeigen, dass ein Gebiet ist, d.h. die Menge

  • ist zusammenhängend und
  • offen.

Der Beweis gliedert sich diese beiden Teile.

Beweis 1: zusammenhängend

Wir zeigen, dass aus stetig und zusammenhängend folgt, dass auch zusammenhängend ist.

Beweis 2: zusammenhängend

Seien beliebig gewählt. Dann gibt mit und . Da zusammenhängend ist, gibt es ein Weg mit und .

Beweis 3: zusammenhängend

Weil stetig ist und ein stetig Weg in ist, so ist auch ein stetiger Weg in , für den gilt:

und

Beweis 4: offen

Es bleibt zu zeigen, dass offen ist, sei dazu und mit . Wir betrachten nun die Menge der -Stellen

Beweis 5: offen - Identitätssatz

Nach dem Identitätssatz kann die Menge keine Häufungspunkte in haben. Hätte eine Häufungspunkte in , dann wäre die holomorphe Funktion konstant mit für alle .

Beweis 6: offen - Umgebungen

Wenn die Menge der -Stellen von keine Häufungspunkte hat, kann man eine Umgebung von so wählen, in der die einzige -Stelle ist. Sei so gewählt, dass gilt.

Beweis 7: offen

Dann definieren wir die kleinste untere Schranke für den Abstand von zu , wobei auf dem Kreisrand von liegt.

Dabei ist , weil stetig ist und auf der kompakten Menge ein Minimum annimmt. Mit kann auf dem Rand keine -Stellen liegen.

Beweis 8: offen - Maximumsprinzip

Wir zeigen, dass gilt. Sei dazu . Wir zeigen nun durch Widerspruch, dass dies beliebige als Bild von getroffen wird.

Beweis 9: offen - Maximumsprinzip

Angenommen, es wäre für alle . Dann nimmt mit auf ein von Null verschiedenes Minimum an. Da nicht konstant ist, muss dieses Minimum auf liegen (sonst ist nach dem Maximumprinzip konstant. Wenn konstant ist, müsste dann auch konstant sein (Widerspruch zur Voraussetzung).

Beweis 9: offen

Da beliebig gewählt wurde und für jedes eine -Umgebung erhalten, die in ist als Vereinigung von offenen Mengen wieder offen.

Siehe auch

Seiteninformation

Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Funktionentheorie' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.