< Gruppenoperation auf Ring < Invariantes Ideal < Beziehungen

Es sei ein kommutativer Ring, auf dem eine Gruppe als Gruppe von Ringautomorphismen operiere. Es sei ein Ideal, das unter der Gruppenoperation invariant ist (es gelte also für und jedes ). Zeige die folgenden Aussagen.

  1. Es gibt eine natürliche Operation von auf dem Restklassenring .
  2. Es gibt einen Ringhomomorphismus
  3. Die Abbildung aus Teil (2) ist injektiv.
  4. Wenn endlich ist und einen Körper der Charakteristik enthält, so ist surjektiv.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.