Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 0 | 1 | 0 | 5 | 2 | 1 | 1 | 3 | 6 | 1 | 2 | 2 | 3 | 7 | 1 | 4 | 3 | 3 | 51 |
Aufgabe * (3 Punkte)
Definiere die folgenden (kursiv gedruckten) Begriffe.
- Die Umkehrabbildung zu einer bijektiven Abbildung .
- Die Assoziativität einer
Verknüpfung
- Eine Primzahl.
- Ein Ring .
- Ein gemeinsamer Teiler von natürlichen Zahlen .
- Ein Dezimalbruch.
Aufgabe * (3 Punkte)
Formuliere die folgenden Sätze.
- /Fakt/Name
- /Fakt/Name
- /Fakt/Name
Aufgabe (0 Punkte)
Aufgabe * (1 Punkt)
Erstelle eine Wertetabelle, die für jede natürliche Zahl von bis ausgibt, mit wie vielen Eurozahlen die Zahl minimal darstellbar ist.
Aufgabe (0 Punkte)
Aufgabe * (5 (3+2) Punkte)
Wir behaupten, dass die Summe von vier aufeinanderfolgenden ungeraden Zahlen durch teilbar ist.
- Beweise diese Aussage mit vollständiger Induktion.
- Beweise diese Aussage ohne vollständige Induktion.
Aufgabe * (2 Punkte)
Beweise die Integritätseigenschaft für die natürlichen Zahlen.
Aufgabe * (1 Punkt)
Winnetou und Old Shatterhand liegen nachts am Strand des Rio Pecos und halten ihre vom harten Tagesritt müden Füße in den Fluss. Dabei schauen sie in den Himmel und zählen Sternschnuppen. Winnetou sieht und Old Shatterhand sieht Sternschnuppen. Old Shatterhand sieht von den von Winnetou gesichteten Sternschnuppen nicht. Wie viele der Sternschnuppen, die von Old Shatterhand gesichtet wurden, sieht Winnetou nicht?
Aufgabe * (1 Punkt)
Berechne
Aufgabe * (3 Punkte)
Aufgabe * (6 Punkte)
Zeige, dass es zu ganzen Zahlen mit eindeutig bestimmte ganze Zahlen mit und mit
gibt.
Aufgabe (1 Punkt)
In einem mathematischen Text steht „“. Welche Bedeutungen könnten damit gemeint sein?
Aufgabe * (2 (0.5+0.5+0.5+0.5) Punkte)
Bestimme, von welcher Art (im Sinne der Vorlesung) die folgenden Gleichungen sind.
Aufgabe (2 Punkte)
Es bezeichne die Nachfolgerabbildung und die Vorgängerabbildung auf den ganzen Zahlen. Begründe die Umlegungsregel
unter Bezug auf das Assoziativgesetz der Addition.
Aufgabe * (3 (1+2) Punkte)
- Finde eine ganzzahlige Lösung
für die Gleichung
- Zeige, dass
eine Lösung für die Gleichung
ist.
Aufgabe * (7 (3+4) Punkte)
Der Flächeninhalt eines Quadrates mit Seitenlänge (das Einheitsquadrat) wird als festgelegt.
- Begründe, dass ein Rechteck, dessen Seitenlängen sind, den Flächeninhalt besitzt. Welche naheliegenden Gesetzmäßigkeiten für den Flächeninhalt werden dabei verwendet?
- Begründe, dass ein Rechteck, dessen Seitenlängen sind, den Flächeninhalt besitzt.
Aufgabe * (1 Punkt)
Finde eine natürliche Zahl derart, dass
ist.
Aufgabe * (4 (3+1) Punkte)
- Durch welche ganze Zahlen kann man innerhalb der Dezimalbrüche stets dividieren?
- Durch welche rationalen Zahlen kann man innerhalb der Dezimalbrüche stets dividieren?
Aufgabe * (3 Punkte)
Man gebe ein Beispiel für eine konvergente Folge in einem angeordneten Körper , die in einem größeren angeordneten Körper
nicht konvergiert.
Aufgabe (3 Punkte)
Diskutiere Unterschiede und Gemeinsamkeiten zwischen der Abziehregel und der Kürzungsregel auf .