< Kurs:Diskrete Mathematik < 18


Aufgabe123456789101112131415161718
Punkte 3 3 0 2 0 3 0 3 1 6 0 5 4 0 0 0 0 2 32



Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Relation/Linkseindeutig/Definition/Begriff
  2. Verband/Boolesch/Definition/Begriff
  3. Eine Äquivalenzrelation auf einer Menge .
  4. Ungerichteter Graph/Automorphismengruppe/Homogen/Definition/Begriff
  5. Ungerichteter Graph/Aufspannender Wald/Definition/Begriff
  6. Ungerichter Graph/Knotenteilmenge/Paarung/Definition/Begriff


Lösung

  1. Relation/Linkseindeutig/Definition/Begriff/Inhalt
  2. Verband/Boolesch/Definition/Begriff/Inhalt
  3. Eine Äquivalenzrelation auf einer Menge ist eine Relation, die die folgenden drei Eigenschaften besitzt (für beliebige ).
    1. .
    2. Aus folgt .
    3. Aus und folgt .
  4. Ungerichteter Graph/Automorphismengruppe/Homogen/Definition/Begriff/Inhalt
  5. Ungerichteter Graph/Aufspannender Wald/Definition/Begriff/Inhalt
  6. Ungerichter Graph/Knotenteilmenge/Paarung/Definition/Begriff/Inhalt


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. /Fakt/Name
  2. /Fakt/Name
  3. /Fakt/Name


Lösung

  1. /Fakt
  2. /Fakt
  3. /Fakt


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (2 (1+1) Punkte)

Anna-Lena, Marie-Simone, Hans-Peter und Fritz-Franz gehen zur Farbberatung. Es ergibt sich folgende Empfehlung. Anna-Lena stehen die Farben grün, gelb und pink, Marie-Simone steht gelb und feuerrot, Hans-Peter steht grün, grau und graublau, Fritz-Franz stehen alle bisher genannten Farben außer graublau, dafür zusätzlich noch violett. Es sei die Menge der vier Personen und die Menge der erwähnten Farben zuzüglich blau.

  1. Erstelle eine Tabelle und ein Verbindungsdiagramm, die die Relation aus Personen und Farben wiedergibt.
  2. Bestimme die Fasern zu blau, zu grün und zu Marie-Simone.


Lösung

  1. grüngelbpinkfeuerrotgraugraublauviolettblau
    Anna-Lena
    Marie-Simone
    Hans-Peter
    Fritz-Franz
  2. Die Faser zu blau ist leer, die Faser zu grün ist und die Faser zu Marie-Simone ist .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Für ein doppelverpacktes Geschenk soll eine würfelförmige Schachtel in eine etwas größere würfelförmige Schachtel hineingelegt werden. Bestimme auf unterschiedliche Arten, wie viele Möglichkeiten es dafür gibt.


Lösung

Wir denken uns den größeren Würfel fest.

Es gibt Möglichkeiten, auf dem kleineren Würfel eine Seite auszusuchen, die der Boden sein soll. Wenn dies festgelegt ist, so gibt es noch Drehmöglichkeiten, wie der Würfel zu platzieren ist. Dies sind Möglichkeiten.

Es gibt Möglichkeiten, auf dem kleineren Würfel eine Ecke auszusuchen, die mit einer fixierten Ecke der größeren Würfelschachtel deckungsgleich werden soll. Wenn dies festgelegt ist, so gibt es noch Drehmöglichkeiten, wie der Würfel zu platzieren ist. Dies sind Möglichkeiten

Es gibt Möglichkeiten, auf dem kleineren Würfel eine Kante auszusuchen, die mit einer fixierten Kante der größeren Würfelschachtel deckungsgleich werden soll. Wenn dies festgelegt ist, so gibt es noch Drehmöglichkeiten, wie der Würfel zu platzieren ist. Dies sind Möglichkeiten


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 (2+1) Punkte)

Es seien positive natürliche Zahlen. Die Summe der Stammbrüche ist dann

  1. Zeige, dass bei teilerfremd diese Darstellung gekürzt ist.
  2. Zeige, dass im Allgemeinen diese Darstellung nicht gekürzt sein muss.


Lösung

  1. Es seien und teilerfremd und es sei eine Primzahl. Wenn den Nenner teilt, so teilt es nach dem Lemma von Euklid einen der Faktoren, sagen wir . Dann teilt es wegen der Teilerfremdheit nicht auch . Somit teilt es auch nicht und Zähler und Nenner sind teilerfremd.
  2. Sei

    Dann ist

    und dies ist keine teilerfremde Darstellung.


Aufgabe (1 Punkt)

Sei eine Gruppe. Zeige, dass

für alle ist.


Lösung

Es ist

Damit ist das Inverse zu . Damit ist


Aufgabe (6 Punkte)

Zeige, dass es zu ganzen Zahlen mit eindeutig bestimmte ganze Zahlen mit und mit

gibt.


Lösung

Zur Existenz. Bei ist eine Lösung. Sei positiv. Da positiv ist, gibt es ein Vielfaches . Daher gibt es auch eine Zahl mit und . Sei . Dann ist

und daher ist wie gewünscht. Bei negativ kann man schreiben nach dem Resultat für positive Zahlen. Daraus ergibt sich

Im zweiten Fall erfüllen und die Bedingungen.
Zur Eindeutigkeit. Sei , wobei die Bedingungen jeweils erfüllt seien. Es sei ohne Einschränkung . Dann gilt . Diese Differenz ist nichtnegativ und kleiner als , links steht aber ein Vielfaches von , so dass die Differenz sein muss und die beiden Darstellungen überein stimmen.


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (5 Punkte)

Beweise den Satz über den Zusammenhang von Graphen mit Blättern.


Lösung

Sei zusammenhängend und . Dann gibt es in einen verbindenden Weg von nach . Wenn in diesem Weg vorkommt, so jedenfalls nicht als Anfangs- oder als Endpunkt, da dies explizit ausgeschlossen ist. Wenn in der Mitte vorkommt, so in der Form , wobei die einzige Kante an bezeichne. Doch in diesem Fall kann man diesen Wegabschnitt herausnehmen und erhält einen kürzeren Weg von nach . Deshalb gibt es auch einen verbindenen Weg, wo gar nicht vorkommt.

Sei nun zusammenhängend und seien . Wenn ist, so kann man direkt einen verbindenden Weg aus nehmen. Wenn ist, so ist mit einem weiteren Knotenpunkt verbunden, und einen Weg in von nach kann man durch die Kante zu einem Weg in von nach fortsetzverlämgern.


Aufgabe (4 Punkte)

Beweise den Rekursionssatz für aufspannende Bäume.


Lösung

Sei . Ein Spannbaum in enthält entweder diese Kante oder nicht. Wir zeigen, dass es im ersten Fall eine Bijektion zu den Spannbäumen der Kontraktion und im zweiten Fall eine Bijektion zu den Spannbäumen von gibt. Dies ist im zweiten Fall unmittelbar klar. Betrachten wir also die Spannbäume in , in denen vorkommt. Wenn man diese Kante herausnimmt, so erhält man einen Spannbaum von , da ja die Endpunkte von miteinander identifiziert werden. Sei umgekehrt ein Spannbaum von gegeben. Dieser durchläuft jeden Punkt von , also auch den Kontraktionspunkt . Indem man die Kante an dieser Stelle einbaut, erhält man einen Spannbaum von .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (2 Punkte)

Es sollen drei Häuser jeweils mit Leitungen an Wasser, Gas und Elektrizität angeschlossen werden. Beschreibe eine Möglichkeit, bei der es nur eine Überschneidung gibt.


Lösung Wasser/Gas/Elektrizität/Eine Überschneidung/Aufgabe/Lösung

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.