< Invariantenring < Formel von Molien < Fakt
Beweis

Der lineare Automorphismus ist nach Fakt diagonalisierbar, da er endliche Ordnung hat. In einer geeigneten Basis besitzt die duale Abbildung die Gestalt

Auf der -ten Stufe induziert dies den linearen Automorphismus

mit . Die Eigenvektoren von sind die verschiedenen Monome

(es sei ) mit mit den Eigenwerten . Die Spur von ist daher

Nach Fakt ergibt sich

mit

Damit ist unter Verwendung der geometrischen Reihe

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.