< Vektorraum < Basisaustauschsatz < Fakt
Beweis
Wir führen Induktion über , also über die Anzahl der Vektoren in der Familie. Bei ist nichts zu zeigen. Sei die Aussage für schon bewiesen und seien linear unabhängige Vektoren
gegeben. Nach Induktionsvoraussetzung, angewandt auf die
(ebenfalls linear unabhängigen) Vektorengibt es eine Teilmenge derart, dass die Familie
eine Basis von ist. Wir wollen auf diese Basis das Austauschlemma anwenden. Da eine Basis vorliegt, kann man
schreiben. Wären hierbei alle Koeffizienten , so ergäbe sich sofort ein Widerspruch zur linearen Unabhängigkeit der , . Es gibt also ein mit . Wir setzen . Damit ist eine -elementige Teilmenge von . Nach dem Austauschlemma kann man den Basisvektor durch ersetzen und erhält die neue Basis
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.