Wir gehen von der komplexen Partialbruchzerlegung von aus. Die reell quadratischen Polynome zerfallen komplex als
mit . In der komplexen Partialbruchzerlegung betrachten wir die Teilsumme
mit . Wenn man auf die gesamte komplexe Partialbruchzerlegung die komplexe Konjugation anwendet, so bleibt der reelle Quotient unverändert, so dass auch die Partialbruchzerlegung in sich überführt wird. Daher müssen und zueinander konjugiert sein und die obige Teilsumme ist daher
wobei das Zählerpolynom reell ist, da es invariant unter der komplexen Konjugation ist. Dieses Zählerpolynom ist im Allgemeinen nicht linear, wir werden aber zeigen, dass man weiter auf lineare Zählerpolynome reduzieren kann. Der Grad von ist kleiner als der Grad des Nennerpolynoms. Durch sukzessive Division mit Rest von durch erhält man
mit linearen (reellen) Polynomen . Daher ist
Wenn man alles aufsummiert, so erhält man insgesamt die Existenz der reellen Partialbruchzerlegung. Für die Eindeutigkeit siehe
Aufgabe.