< Matrix < Elementarmatrizen < Einheitsmatrix < 4
Es sei
M
=
(
4
3
5
1
)
.
{\displaystyle {}M={\begin{pmatrix}4&3\\5&1\end{pmatrix}}\,.}
Finde
Elementarmatrizen
E
1
,
…
,
E
k
{\displaystyle {}E_{1},\ldots ,E_{k}}
derart, dass
E
k
∘
⋯
∘
E
1
∘
M
{\displaystyle {}E_{k}\circ \cdots \circ E_{1}\circ M}
die Einheitsmatrix ist.
Zur Lösung
,
Alternative Lösung erstellen
This article is issued from
Wikiversity
. The text is licensed under
Creative Commons - Attribution - Sharealike
. Additional terms may apply for the media files.