< Linear unabhängig < Einfache Eigenschaften
Sei ein Körper, ein -Vektorraum und , , eine Familie von Vektoren in . Dann gelten folgende Aussagen.
- Wenn die Familie linear unabhängig ist, so ist auch zu jeder Teilmenge die Familie , , linear unabhängig.
- Die leere Familie ist linear unabhängig.
- Wenn die Familie den Nullvektor enthält, so ist sie nicht linear unabhängig.
- Wenn in der Familie ein Vektor mehrfach vorkommt, so ist sie nicht linear unabhängig.
- Ein einzelner Vektor ist genau dann linear unabhängig, wenn ist.
- Zwei Vektoren und sind genau dann linear unabhängig, wenn weder ein skalares Vielfaches von ist noch umgekehrt.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.