< Kurs:Diskrete Mathematik < 25


Aufgabe12345678910111213141516171819
Punkte 3 3 0 0 0 0 0 0 0 3 3 8 0 0 0 0 0 0 0 20



Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Die Reflexivität einer Relation auf einer Menge .
  2. Teilbarkeitstheorie (N)/Kleinstes gemeinsames Vielfache/Definition/Begriff
  3. Die kanonische Projektion zu einer Äquivalenzrelation auf einer Menge .
  4. Ungerichteter Graph/Kantenteilmenge/Restgraph/Definition/Begriff
  5. Ungerichteter Graph/Zusammenhangskomponente/Definition/Begriff
  6. Graph/Knotenüberdeckung/Definition/Begriff


Lösung

  1. Die Relation heißt reflexiv, wenn für alle gilt.
  2. Teilbarkeitstheorie (N)/Kleinstes gemeinsames Vielfache/Definition/Begriff/Inhalt
  3. Man nennt die Abbildung

    die kanonische Projektion.

  4. Ungerichteter Graph/Kantenteilmenge/Restgraph/Definition/Begriff/Inhalt
  5. Ungerichteter Graph/Zusammenhangskomponente/Definition/Begriff/Inhalt
  6. Graph/Knotenüberdeckung/Definition/Begriff/Inhalt


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. /Fakt/Name
  2. /Fakt/Name
  3. /Fakt/Name


Lösung

  1. /Fakt
  2. /Fakt
  3. /Fakt


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Zeige, dass für natürliche Zahlen die folgenden Teilbarkeitsbeziehungen gelten.

  1. Für jede natürliche Zahl gilt und .
  2. Für jede natürliche Zahl gilt .
  3. Gilt und , so gilt auch .
  4. Gilt und , so gilt auch .
  5. Gilt , so gilt auch für jede natürliche Zahl .
  6. Gilt und , so gilt auch für beliebige natürliche Zahlen .


Lösung

  1. Ist klar wegen
  2. Ist klar wegen
  3. Die beiden Voraussetzungen bedeuten die Existenz von mit und . Somit ist

    und ist auch ein Teiler von .

  4. Aus den Voraussetzungen und ergibt sich direkt

    also ist ein Teiler von .

  5. Aus der Voraussetzung ergibt sich direkt

    also ist ein Teiler von .

  6. Aus den Voraussetzungen und ergibt sich direkt mit dem Distributivgesetz

    also ist ein Teiler von .


Aufgabe (3 Punkte)

Bestimme in mit Hilfe des euklidischen Algorithmus den größten gemeinsamen Teiler von und und schreibe die beiden Zahlen als Vielfache des größten gemeinsamen Teilers.


Lösung

Es ist

Der größte gemeinsame Teiler ist also . Aus den Rechnungen erhält man

und


Aufgabe (8 (3+2+3) Punkte)

Wir betrachten auf der Menge aller stetigen Funktionen von nach die folgende Relation: Es ist , falls es eine nullstellenfreie stetige Funktion mit

gibt.

  1. Zeige, dass eine Äquivalenzrelation ist.
  2. Zeige, dass aus folgt, dass die Nullstellenmenge von und von übereinstimmen.
  3. Zeige, dass die beiden Funktionen

    und

    nicht zueinander äquivalent sind.


Lösung

  1. Es ist , da

    ist, man also für die konstante Funktion mit dem Wert nehmen kann, die stetig ist und keine Nullstelle besitzt. Zum Nachweis der Symmetrie sei

    mit einer stetigen nullstellenfreien Funktion . Dann ist auch die Funktion

    wohldefiniert, nullstellenfrei und nach Fakt ***** auch stetig. Damit gilt

    Zum Nachweis der Transitivität gelte

    und

    mit stetigen nullstellenfreien Funktionen . Dann ist

    und ist ebenfalls nach Fakt ***** eine stetige nullstellenfreie Funktion.

  2. Es sei

    mit stetig und nullstellenfrei. Dann ist für jedes

    Wegen

    gilt

    genau dann, wenn

    ist. Dies bedeutet, dass und die gleichen Nullstellen besitzen.

  3. Nehmen wir an, dass und im beschriebenen Sinne äquivalent sind. Dann gibt es eine stetige nullstellenfreie Funktion mit

    für alle . Für bedeutet dies

    Wegen der vorausgesetzten Stetigkeit von bedeutet dies nach Fakt *****  (2), dass auch

    sein muss. Dies widerspricht aber der vorausgesetzten Nullstellenfreiheit von .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.