< Dedekindbereich < Ganzer Abschluss < Fundamentale Gleichung < Fakt
Beweis
Nach dem chinesischen Restsatz für Dedekindbereiche ist
Wir können über dem diskreten Bewertungsring argumentieren, also davon ausgehen, dass ein diskreter Bewertungsring mit dem maximalen Ideal ist. Die angeführten Restklassenringe ändern sich dadurch nicht. Es ist ein freier -Modul vom Rang und somit ist
ein -Vektorraum der Dimension . Oben rechts steht das Produkt der -Vektorräume und es ist zu zeigen, dass deren -Dimension gleich ist. Dies zeigen wir durch Induktion über , wobei der Induktionsanfang für die Definition des Trägheitsgrades ist. Wegen liegt eine kurze exakte Sequenz
vor. Dabei ist
Deshalb folgt die Aussage aufgrund der Vektorraumadditivität in kurzen exakten Sequenzen.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.