< Quadratisches Reziprozitätsgesetz <
Fakt
Beweis
Nach
Fakt
ist unter Verwendung von
Fakt
und
Fakt
(
q
p
)
=
(
(
−
1
p
)
p
q
)
=
(
(
−
1
p
)
q
)
⋅
(
p
q
)
=
(
(
−
1
)
p
−
1
2
q
)
⋅
(
p
q
)
=
(
−
1
q
)
p
−
1
2
⋅
(
p
q
)
=
(
(
−
1
)
q
−
1
2
)
p
−
1
2
⋅
(
p
q
)
=
(
−
1
)
q
−
1
2
⋅
p
−
1
2
⋅
(
p
q
)
.
{\displaystyle {}{\begin{aligned}\left({\frac {q}{p}}\right)&=\left({\frac {\left({\frac {-1}{p}}\right)p}{q}}\right)\\&=\left({\frac {\left({\frac {-1}{p}}\right)}{q}}\right)\cdot \left({\frac {p}{q}}\right)\\&=\left({\frac {(-1)^{\frac {p-1}{2}}}{q}}\right)\cdot \left({\frac {p}{q}}\right)\\&=\left({\frac {-1}{q}}\right)^{\frac {p-1}{2}}\cdot \left({\frac {p}{q}}\right)\\&={\left((-1)^{\frac {q-1}{2}}\right)}^{\frac {p-1}{2}}\cdot \left({\frac {p}{q}}\right)\\&=(-1)^{{\frac {q-1}{2}}\cdot {\frac {p-1}{2}}}\cdot \left({\frac {p}{q}}\right).\end{aligned}}}
Zur bewiesenen Aussage
This article is issued from
Wikiversity
. The text is licensed under
Creative Commons - Attribution - Sharealike
. Additional terms may apply for the media files.