< Positive reelle Zahlen < Sonderbare Verknüpfungen < Aufgabe

Wir betrachten die reelle Exponentialfunktion zur Basis , also die Abbildung

Diese Abbildung ist bijektiv, da wir den Bildbereich entsprechend eingeschränkt haben, mit dem natürlichen Logarithmus als Umkehrabbildung. Unter dieser Abbildung gilt

d.h. die Addition wird auf die neue Addition abgebildet, und

d.h. die Multiplikation wird auf die neue Addition abgebildet. Unter dieser Abbildung bleiben alle Gesetzmäßigkeiten erhalten, deshalb ist mit den neuen Verknüpfungen ebenfalls ein Körper. Die neutralen Elemente sind die Bilder der neutralen Elemente, d.h. die ist neutrales Element der neuen Addition und ist neutrales Element der neuen Multiplikation.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.