< Matrix < Eigenräume < 3 < Aufgabe

Das charakteristische Polynom ist

Dies ergibt zunächst den Eigenwert . Durch quadratisches Ergänzen (oder direkt) sieht man für den quadratischen Term die Nullstellen und , die die weiteren Eigenwerte sind. Da es drei verschiedene Eigenwerte gibt ist klar, dass zu jedem Eigenwert der Eigenraum eindimensional ist.

Eigenraum zu : Man muss die Lösungsmenge von

bestimmen. Eine Lösung ist offenbar der Spaltenvektor , so dass der Eigenraum zu gleich ist.

Eigenraum zu : Man muss die Lösungsmenge von

bestimmen. Eine Lösung ist offenbar der Spaltenvektor , so dass der Eigenraum zu gleich ist.

Eigenraum zu : Man muss die Lösungsmenge von

bestimmen. Eine Lösung ist offenbar der Spaltenvektor , so dass der Eigenraum zu gleich ist.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.