< Kommutativer Ring < Maximales Ideal < Existenz < Fakt
Beweis

Wir betrachten die Menge

Diese Menge enthält das Nullideal und ist somit nicht leer. Wir wollen das Lemma von Zorn auf (mit der Inklusion als Ordnungsrelation) anwenden. Dazu sei eine total geordnete Teilmenge. Wir setzen

Man zeigt nun, dass ein Ideal ist, das nicht die enthält. Also gehört es zu und es bildet eine obere Schranke für . Das Lemma von Zorn liefert dann maximale Elemente in , und dies sind maximale Ideale.

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.