< Fußballweltmeisterschaft < KO-Runde < Elementare Äquivalenz

Es sei das Symbolalphabet, das neben Variablen aus dem einzigen zweistelligen Relationssymbol besteht. Wir betrachten die KO-Runden (also ab dem Achtelfinale) der Fußballweltmeisterschaften von 2014 und von 2018, ohne das Spiel um Platz , als -Modelle, wobei wir als die Gewinnrelation interpretieren, d.h. besagt, dass gegen (gespielt und) gewonnen hat.

  1. Welche der folgenden Relationen sind für die WM 2014 wahr: Brasilien G Deutschland, Deutschland G Brasilien, Deutschland G Argentinien, Mexiko G Japan.
  2. Ist eine Charakterisierung des Weltmeisters?
  3. Charakterisiere durch einen -Ausdruck in der einen freien Variablen , dass eine Mannschaft mindestens das Halbfinale erreicht hat.
  4. Charakterisiere durch einen -Ausdruck in der einen freien Variablen , dass eine Mannschaft das Halbfinale, aber nicht das Finale erreicht hat.
  5. Betrachte Schweden bei der WM 2018. Man gebe einen -Ausdruck in der einen freien Variablen , der Schweden charakterisiert.
  6. Welche(n) Mannschaft(en) der WM 2014 erfüllt (erfüllen) den -Ausdruck, der Schweden bei der WM 2018 charakterisiert?
  7. Definiere einen -Isomorphismus zwischen der WM 2014 und der WM 2018.
  8. Ist dies auch ein Isomorphismus, wenn man das Spiel um Platz mitberücksichtigt?
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.