DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH
VERSTÄNDLICH
AUFBAUEND
GRATIS!*
UND SYMPATHISCH

JETZT STARTEN!
MIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGSVIDEOS!
Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
LINKS
Zumindest eine Aufgabe probieren
Theorie in Kürze (mit Geogebra)


Kreis, dessen Mittelpunkt sich am Anfang des (kartesischen) Koordinatensystems befindet und dessen Radius 1 ist. Der Winkel wird als Drehung im Bezug auf dem rechten Teil der x-Achse gemessen. Da der Radius 1 ist, ist der Umfang 2π. Das wird als Basis für die Winkeleinheit "Radiant" (Symbol: rad) benutzt. 360° Winkel ist so viel wie 2π rad.

Aufgaben


    1. Rechnen Sie in Grad ° (Winkelmaß) um!
      A) , B), C), D), E)
    2. Rechnen Sie in Radiants (Bogenmaß) um
      A), B), C), D), E)
    3. Sind folgende Winkel mehr oder weniger als ein Halbkreis?
      Wo befinden sie sich im Einheitskreis?
      A), B), C), D), E)

    1. Rechnen Sie in Grad ° (Winkelmaß) um!
      a) , B), C), D) , E)
    2. Rechnen Sie in Radiants (Bogenmaß) um
      A), B), C), D), E)
    3. Sind folgende Winkel mehr oder weniger als ein Halbkreis?
      Wo befinden sie sich im Einheitskreis?
      A), B), C), D), E)

    1. Rechnen Sie in Grad ° (Winkelmaß) um!
      a) , B), C), D), E)
    2. Rechnen Sie in Radiants (Bogenmaß) um
      A), B), C), D), E)
    3. Sind folgende Winkel mehr oder weniger als ein Halbkreis?
      Wo befinden sie sich im Einheitskreis?
      A), B), C), D), E)

    1. Rechnen Sie in Grad ° (Winkelmaß) um!
      a) , B), C), D), E)
    2. Rechnen Sie in Radiants (Bogenmaß) um
      A), B), C), D), E)
    3. Sind folgende Winkel mehr oder weniger als ein Halbkreis?
      Wo befinden sie sich im Einheitskreis?
      A), B), C), D), E)
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.