DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH
VERSTÄNDLICH
AUFBAUEND
GRATIS!*
UND SYMPATHISCH

JETZT STARTEN!
MIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGSVIDEOS!
Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
ACHTUNG!
Zumindest Aufgabe 1 von jedem Aufgabentyp probieren,
sie sind unterschiedlich!

Polynomfunktionen Diagramm


    1. In den folgenden Diagrammen bestimmen Sie den
      Grad der dargestellten Polynomfunktion, die Anzahl
      ihrer Lösungen, ihr Monotonieverhalten in den
      verschiedenen Intervallen, das Vorzeichen der
      Koeffizienten der Potenz mit dem höchsten Grad und
      wenn möglich den Wert des y-Achsenabschnitts!


    1. In den folgenden Diagrammen bestimmen Sie den
      Grad der dargestellten Polynomfunktion, die Anzahl
      ihrer Lösungen, ihr Monotonieverhalten in den
      verschiedenen Intervallen, das Vorzeichen der
      Koeffizienten der Potenz mit dem höchsten Grad und
      wenn möglich den Wert des y-Achsenabschnitts!


    1. In den folgenden Diagrammen bestimmen Sie den
      Grad der dargestellten Polynomfunktion, die Anzahl
      ihrer Lösungen, ihr Monotonieverhalten in den
      verschiedenen Intervallen, das Vorzeichen der
      Koeffizienten der Potenz mit dem höchsten Grad und
      wenn möglich den Wert des y-Achsenabschnitts!


    1. In den folgenden Diagrammen bestimmen Sie den
      Grad der dargestellten Polynomfunktion, die Anzahl
      ihrer Lösungen, ihr Monotonieverhalten in den
      verschiedenen Intervallen, das Vorzeichen der
      Koeffizienten der Potenz mit dem höchsten Grad und
      wenn möglich den Wert des y-Achsenabschnitts!

Schnittpunkte von Funktionen in einem Diagramm



    1. Im Bild sehen wir eine Polynomfunktion r(x) (gestrichelt),
      drei quadratische Funktionen p(x), q(x) und h(x)
      (zwei Kurven p und h nach oben und eine Kurve q nach
      unten) und zwei lineare Funktionen g(x) und f(x)
      (Gerade g nach unten rechts und Gerade f nach
      oben rechts). Lesen Sie vom Diagramm ab:

    2. Die Lösungen (Nullstellen) jeder Funktion.
    3. Den y-Achsenabschnitt jeder Funktion.
    4. Die Lösungen der Gleischungssysteme,
      die aus folgenden Funktionen bestehen:
    5. i) g und f ii) p und r iii) p und g
      iv)f und q v) r und f vi) g und h



    1. Im Bild sehen wir eine Polynomfunktion r(x) (gestrichelt),
      drei quadratische Funktionen p(x), q(x) und h(x)
      (zwei Kurven p und h nach oben und eine Kurve q nach
      unten) und zwei lineare Funktionen g(x) und f(x)
      (Gerade g nach unten rechts und Gerade f nach
      oben rechts). Lesen Sie vom Diagramm ab:

    2. Die Lösungen (Nullstellen) jeder Funktion.
    3. Den y-Achsenabschnitt jeder Funktion.
    4. Die Lösungen der Gleischungssysteme,
      die aus folgenden Funktionen bestehen:
    5. i) g und f ii) p und r iii) p und g
      iv)f und q v) r und f vi) g und h



    1. Im Bild sehen wir eine Polynomfunktion r(x) (gestrichelt),
      drei quadratische Funktionen p(x), q(x) und h(x)
      (zwei Kurven p und h nach oben und eine Kurve q nach
      unten) und zwei lineare Funktionen g(x) und f(x)
      (Gerade g nach unten rechts und Gerade f nach
      oben rechts). Lesen Sie vom Diagramm ab:

    2. Die Lösungen (Nullstellen) jeder Funktion.
    3. Den y-Achsenabschnitt jeder Funktion.
    4. Die Lösungen der Gleischungssysteme,
      die aus folgenden Funktionen bestehen:
    5. i) g und f ii) p und r iii) p und g
      iv)f und q v) r und f vi) g und h



    1. Im Bild sehen wir eine Polynomfunktion g(x) (gestrichelt),
      drei quadratische Funktionen c(x), d(x) und e(x)
      (zwei Kurven c und e nach oben und eine Kurve d nach
      unten) und zwei lineare Funktionen h(x) und f(x)
      (Gerade f nach unten rechts und Gerade h nach
      oben rechts). Lesen Sie vom Diagramm ab:

    2. Die Lösungen (Nullstellen) jeder Funktion.
    3. Den y-Achsenabschnitt jeder Funktion.
    4. Die Lösungen der Gleischungssysteme,
      die aus folgenden Funktionen bestehen:
    5. i) h und f ii) g und d iii) c und f
      iv)e und h v) g und f vi) c und d

Schnittpunkte von Funktionen in einem Text


    1. Gegeben sind die Funktionen

    2. Berechnen Sie die Lösungen (Nullstellen) jeder Funktion!
    3. Lesen Sie den y-Achsenabschnitt jeder Funktion ab!
    4. Finden Sie, ob der Punkt P:(2|−5)
    5. zu mancher der Funktionen gehört!
    6. Lesen Sie die Steigung der beiden Geraden ab!
    7. Berechnen Sie die Lösungen der folgenden Gleichungssysteme
    8. i) g und f, ii) p und q, iii) p und g


    1. Gegeben sind die Funktionen

    2. Berechnen Sie die Lösungen (Nullstellen) jeder Funktion!
    3. Lesen Sie den y-Achsenabschnitt jeder Funktion ab!
    4. Finden Sie, ob der Punkt P:(2|−5)
    5. zu mancher der Funktionen gehört!
    6. Lesen Sie die Steigung der beiden Geraden ab!
    7. Berechnen Sie die Lösungen der folgenden Gleichungssysteme
    8. i) g und f, ii) p und q, iii) f und q


    1. Gegeben sind die Funktionen

    2. Berechnen Sie die Lösungen (Nullstellen) jeder Funktion!
    3. Lesen Sie den y-Achsenabschnitt jeder Funktion ab!
    4. Finden Sie, ob der Punkt P:(0{,}625|−0{,}6875)
    5. zu mancher der Funktionen gehört!
    6. Lesen Sie die Steigung der beiden Geraden ab!
    7. Berechnen Sie die Lösungen der folgenden Gleichungssysteme
    8. i) g und f, ii) p und q, iii) p und g


    1. Gegeben sind die Funktionen

    2. Berechnen Sie die Lösungen (Nullstellen) jeder Funktion!
    3. Lesen Sie den y-Achsenabschnitt jeder Funktion ab!
    4. Finden Sie, ob der Punkt P:(1|)
    5. zu mancher der Funktionen gehört!
    6. Lesen Sie die Steigung der beiden Geraden ab!
    7. Berechnen Sie die Lösungen der folgenden Gleichungssysteme
    8. i) g und f, ii) h und q, iii) p und g

Umkehrfunktionen mit Umformen finden


    1. Finden Sie die Umkehrfunktion:


    1. Finden Sie die Umkehrfunktion:


    1. Finden Sie die Umkehrfunktion:


    1. Finden Sie die Umkehrfunktion:

Funktionserkennung in Diagramm

    Welches der folgenden Diagrammen stellt was dar?

    A) lineare Funktion, B) Polynomfunktion 2. Grades
    C) Wurzelfunktion, D) Polynomfunktion 3. Grades
    E) Polynomfunktion 4. Grades, F) Sinusfunktion
    G) Kosinusfunktion, H) quadratische Funktion,
    K) (natürlichen) Logarithmusfunktion, L)
    M) Exponentialfunktion, N) Umkehrfunktionenpaar

Funktionserkennung in Text

Im Folgenden finden wir verschiedene Diagramme, Formel und Namen von Funktionen als auch
Textaufgaben darüber. Welche sind die richtigen Kombinationen für jede Textaufgabe? Mit Hilfe der
Textaufgaben finden Sie die Werte der Parameter a und b in der dem Text entsprechenden Formel.

Texte

TA (Text A)
Fanny will feststellen, ob ihre Katze einen freien
Fall überlebt und lässt sie aus einem 8 m hohen
Turm mit einer 3 m/s² festen Beschleunigung Fallen.
TB (Text B)
Die Bevölkerung in Deutschland ist ca. 82 Millionen
und wird jede Jahrzehnte um 2,3% weniger.
TC (Text C)
Bei der Schwingung einer Feder ist die maximale
Ablenkung 3 cm, eine vollständige Wiederholung
braucht 350 ms.
TD (Text D)
Ein Baum ist 3,5 m groß und wächst pro Woche
um 5 cm.
TE (Text E)
Eine 1,8 dm große Kerze schmilzt jede Stunde
um 3 cm.
TF (Text F)
Wenn wir auf einen Nagel eine Kraft ausüben,
ist der Druck desto größer, je kleiner die Fläche A
an der Spitze des Nagels ist aber je größer die Kraft
F ist. (Hier a und b durch entsprechende Symbole ersetzten)
TG (Text G)
Ein Bakterienkultur verdreifacht sich jede Stunde.
Am Anfang gibt es 5 Bakterien.

Diagramme



Funktionsnamen NA: (Name A) lineare, NB:(Name B) quadratische, NC: (Name C) exponentielle,
ND: (Name D) logarithmische, NE: (Name E) Potenzfunktion 3. Grades,
NF: (Name F) Sinusfunktion, NG: (Name G) Wurzelfunktion,
NH:(Name H) indirekte Proportionalität.

Formeln FA: (Formel A)FB: (Formel B)FC: (Formel C)
FD: (Formel D)FE: (Formel E)
FF: (Formel F)FG: (Formel G)


Funktionsdiagramme Eigenschaften erkennen


    1. Wählen Sie das jeweils richtige Diagramm und
      beantworten Sie die entsprechende Frage!
    2. Wie viel ist der y-Achsenabschnitt bei jedem Diagramm?
    3. Wie viel ist die Steigung der linearen Funktionen?
    4. ist die quadratische Funktion.
      • Bei welcher Funktion ist a negativ bzw. positiv?
    5. ist die exponentielle Funktion.
    6. ist die indirekte Proportionalität.
      Bei welcher Funktion ist a negativ bzw. positiv?
    7. In welchen Intervallen sind die quadratischen und die linearen
      Funktionen, die Sinusfunktionen bzw die indirekte
      Proportionalität steigend bzw. fallend?
    8. Gibt es in irgendeinem Diagramm eine Funktion und
      ihre Umkehrfunktion?
    9. Gibt es in irgendeinem Diagramm eine Funktion und
      ihre auf der y-Achse gespeigelte Funktion? Was gilt
      in diesem Fall für f(x) und ihre Spiegelfunktion fs(x)?

    1. Wählen Sie das jeweils richtige Diagramm und
      beantworten Sie die entsprechende Frage!
    2. Wie viel ist der y-Achsenabschnitt bei jedem Diagramm?
    3. Wie viel ist die Steigung der linearen Funktionen?
    4. ist die quadratische Funktion.
      • Bei welcher Funktion ist a negativ bzw. positiv?
      • Wo ist der Betrag von a größer?
    5. ist die exponentielle Funktion.
      • Bei welcher Funktion ist a negativ bzw. positiv?
      • Wo ist der Betrag von a größer?
      • Bei welcher Funktion ist a negativ bzw. positiv?
      • Wo ist der Betrag von a größer?
    6. ist die indirekte Proportionalität.
      Bei welcher Funktion ist a negativ bzw. positiv?
    7. In welchen Intervallen sind die quadratischen und die linearen
      Funktionen, die Sinusfunktionen bzw die indirekte
      Proportionalität steigend bzw. fallend?
    8. Gibt es in irgendeinem Diagramm eine Funktion und
      ihre Umkehrfunktion?
    9. Gibt es in irgendeinem Diagramm eine Funktion und
      ihre auf der y-Achse gespeigelte Funktion? Was gilt
      in diesem Fall für f(x) und ihre Spiegelfunktion fs(x)?
    10. Wie viel ist die Amplitude und die Periode in den Sinusfunktionen?
      Gibt es bei manchen eine Winkelverschiebung?
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.