I have a large data set, statistic, with statistic.shape = (1E10,) that I want to effectively bin (sum) into an array of zeros, out = np.zeros(1E10). Each entry in statistic has a corresponding index, idx, which tells me in which out bin it belongs. The indices are not unique so I cannot use out += statistic[idx] since this will only count the first time a particular index is encountered. Therefore I'm using np.add.at(out, idx, statistic). My problem is that for very large arrays, np.add.at() returns the wrong answer.
Below is an example script that shows this behaviour. The function check_add() should return 1.
import numpy as np
def check_add(N):
N = int(N)
out = np.zeros(N)
np.add.at(out, np.arange(N), np.ones(N))
return np.sum(out)/N
n_arr = [1E3, 1E5, 1E8, 1E10]
for n in n_arr:
print('N = {} (log(N) = {}); output ratio is {}'.format(n, np.log10(n), check_add(n)))
This example returns for me:
N = 1000.0 (log(N) = 3.0); output ratio is 1.0
N = 100000.0 (log(N) = 5.0); output ratio is 1.0
N = 100000000.0 (log(N) = 8.0); output ratio is 1.0
N = 10000000000.0 (log(N) = 10.0); output ratio is 0.1410065408
Can someone explain to me why the function fails for N=1E10?