Zahlentheorie

Arbeitsblatt 26

Übungsaufgaben

Aufgabe 26.1. Zeige, dass der Durchschnitt von konvexen Mengen wieder konvex ist.

Aufgabe 26.2. Zeige, dass der Einheitskreis

$$S^1_{\mathbb{R}} = \{ z \in \mathbb{R}[i] \cong \mathbb{C} | |z| = 1 \}$$

isomorph zu \mathbb{R}/\mathbb{Z} ist.

AUFGABE 26.3. Charakterisiere die Restklassengruppe eines Gitters $\Gamma \subseteq \mathbb{R}^n$.

AUFGABE 26.4. Es seien $\Gamma_1, \Gamma_2 \subseteq \mathbb{R}^n$ vollständige Gitter. Zeige, dass es eine \mathbb{R} -lineare Abbildung

$$\mathbb{R}^n \longrightarrow \mathbb{R}^n$$

gibt, die einen Gruppenisomorphismus

$$\Gamma_1 \longrightarrow \Gamma_2$$

induziert.

AUFGABE 26.5. Es seien $\Gamma_1, \Gamma_2 \subseteq \mathbb{R}^n$ rationale vollständige Gitter. Zeige, dass es eine \mathbb{Q} -lineare Abbildung

$$\mathbb{O}^n \longrightarrow \mathbb{O}^n$$

gibt, die einen Gruppenisomorphismus

$$\Gamma_1 \longrightarrow \Gamma_2$$

induziert.

Aufgabe 26.6. Es seien $\Gamma_1, \Gamma_2 \subseteq \mathbb{R}^n$ rationale vollständige Gitter. Zeige, dass es ein rationales Gitter $\Gamma \subseteq \mathbb{R}^n$ mit $\Gamma_1, \Gamma_2 \subseteq \Gamma$ gibt.

AUFGABE 26.7. Es sei X ein Hausdorffraum und es sei $Y \subseteq X$ eine Teilmenge, die die induzierte Topologie trage. Es sei Y kompakt. Zeige, dass Y abgeschlossen in X ist.

AUFGABE 26.8. Es sei X ein topologischer Raum und es seien $Y_1, \ldots, Y_n \subseteq X$ kompakte Teilmengen. Zeige, dass auch die Vereinigung $Y = \bigcup_{i=1}^n Y_i$ kompakt ist.

AUFGABE 26.9. Es seien $X,Y\subseteq\mathbb{R}^n$ kompakte Teilmengen. Zeige, dass es Punkte $x\in X$ und $y\in Y$ mit der Eigenschaft gibt, dass für beliebige Punkte $P\in X$ und $Q\in Y$ die Abschätzung

$$d(x,y) \le d(P,Q)$$

gilt.

Tipp: Betrachte die Produktmenge $S \times T \subseteq \mathbb{R}^n \times \mathbb{R}^n \cong \mathbb{R}^{2n}$ und darauf die Abbildung $(x,y) \mapsto \sum_{i=1}^n (x_i - y_i)^2$. Argumentiere dann mit Satz 36.12 (Analysis (Osnabrück 2014-2016)).

AUFGABE 26.10. Zeige, dass ein Körper K genau dann die Charakteristik 0 besitzt, wenn die additive Gruppe (K, +, 0) torsionsfrei ist.

Aufgaben zum Abgeben

Aufgabe 26.11. (4 Punkte)

Alle Springmäuse leben in \mathbb{Z}^2 und verfügen über zwei Sprünge, nämlich den Sprung $\pm(3,4)$ und den Sprung $\pm(5,2)$. Wie viele Springmaus-Populationen gibt es? Die Springmäuse Albert, Beate, Erich, Heinz, Sabine und Frida sitzen in den Positionen

$$(14, 11), (13, 15), (17, 12), (15, 19), (16, 16)$$
 und $(12, 20)$.

Welche Springmäuse können sich begegnen?

Aufgabe 26.12. (4 Punkte)

Sei U eine Teilmenge des \mathbb{R}^n . Zeige, dass ein Punkt $Q \in \mathbb{R}^n$ genau dann zur konvexen Hülle von U gehört, wenn es endlich viele Punkte $P_i \in U, i \in I$, und reelle Zahlen $r_i, i \in I$, mit $r_i \in [0,1], \sum_{i \in I} r_i = 1$ und mit

$$Q = \sum_{i \in I} r_i P_i$$

gibt.

Aufgabe 26.13. (6 Punkte)

Skizziere zum Gitter \mathbb{Z}^2 in \mathbb{R}^2 drei Teilmengen, die die Maßbedingung des Gitterpunksatzes von Minkowski erfüllen, die den Nullpunkt, aber keine weitere Gitterpunkte enthalten, und die jeweils zwei der drei Bedingungen konvex, kompakt und zentralsymmetrisch erfüllen.