Zahlentheorie

Arbeitsblatt 23

Übungsaufgaben

Aufgabe 23.1. Bestimme den Hauptdivisor zu 840 in \mathbb{Z} .

AUFGABE 23.2. Bestimme den Hauptdivisor zu 840 in Z[i].

Aufgabe 23.3. Bestimme den Hauptdivisor zur Gaußschen Zahl 5 + 7i.

Aufgabe 23.4. Sei R ein Zahlbereich und sei $f \in R$ gegeben als ein Produkt

$$f = up_1^{\nu_1} \cdots p_r^{\nu_r}$$

mit paarweise nicht assoziierten Primelementen p_i und einer Einheit u. Zeige, dass dann für den zugehörigen Hauptdivisor die Gleichheit

$$\operatorname{div}(f) = \nu_1(p_1) + \dots + \nu_r(p_r)$$

gilt, wobei die (p_i) die von p_i erzeugten Primideale bezeichnen.

AUFGABE 23.5. Es sei R ein Zahlbereich und $f \in R$, $f \neq 0$. Zeige, dass der Hauptdivisor div(f) mit dem Divisor zum Hauptdeal (f) übereinstimmt.

AUFGABE 23.6. Es sei R ein Zahlbereich und $\mathfrak{a} \subseteq R$ ein von 0 verschiedenes Ideal mit einem Erzeugendensystem $\mathfrak{a} = (f_1, \ldots, f_n)$. Zeige

$$\operatorname{div}(\mathfrak{a}) = \min \left\{ \operatorname{div}(f_i) | i = 1, \dots, n \right\}.$$

AUFGABE 23.7. Es sei R ein Zahlbereich und seien $f,g\in R$ von 0 verschiedene Elemente. Zeige, dass f genau dann ein Teiler von g ist, wenn für die Hauptdivisoren die Beziehung

$$\operatorname{div}(f) \leq \operatorname{div}(g)$$

gilt.

AUFGABE 23.8. Sei R ein kommutativer Ring, sei $f \in R$ und sei \mathfrak{a} ein Ideal. Zeige, dass $f \in \mathfrak{a}$ genau dann gilt, wenn für alle Lokalisierungen $R_{\mathfrak{p}}$ gilt, dass $f \in \mathfrak{a}R_{\mathfrak{p}}$ ist.

AUFGABE 23.9. Sei R ein kommutativer Ring und sei \mathfrak{m} ein maximales Ideal mit Lokalisierung $R_{\mathfrak{m}}$. Es sei \mathfrak{a} ein Ideal, dass unter der Lokalisierungsabbildung zum Kern gehört. Zeige, dass dann $R_{\mathfrak{m}}$ auch eine Lokalisierung von R/\mathfrak{a} ist.

AUFGABE 23.10. Sei R ein kommutativer Ring und sei $\mathfrak p$ ein Primideal. Dann ist der Restklassenring $S=R/\mathfrak p$ ein Integritätsbereich mit Quotientenkörper Q=Q(S) und $R_{\mathfrak p}$ ist ein lokaler Ring mit dem maximalen Ideal $\mathfrak p R_{\mathfrak p}$. Zeige, dass eine natürliche Isomorphie

$$Q(S) \cong R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$$

vorliegt.

Den in der vorstehenden Aufgabe beschriebenen Körper nennt man auch den $Restek\"{o}rper$ von $\mathfrak p$

man bezeichnet ihn mit $\kappa(\mathfrak{p})$. Die Abbildung

$$R \longrightarrow \kappa(\mathfrak{p}), f \longmapsto f \mod \mathfrak{p},$$

(aufgefasst in diesem Körper) heißt auch die Auswertungsabbildung (oder Evaluationsabbildung) an der Stelle \mathfrak{p} .

Aufgabe 23.11. Es sei R ein kommutativer Ring und

$$\varphi \colon R \longrightarrow K$$

ein Ringhomomorphismus in einen Körper K. Zeige, dass es eine eindeutig bestimmte Faktorisierung

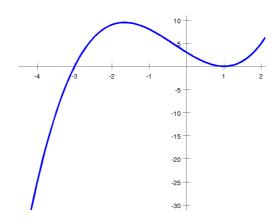
$$R \longrightarrow \kappa(\mathfrak{p}) \longrightarrow K$$

mit einem Restekörper $\kappa(\mathfrak{p})$ zu einem Primideal \mathfrak{p} gibt.

AUFGABE 23.12. Zeige, dass zu $a \in \mathbb{C}$ der Einsetzungshomomorphismus

$$\mathbb{C}[X] \longrightarrow \mathbb{C}, X \longmapsto a,$$

mit der Evaluationsabbildung (in den Restekörper $\mathbb{C}[X]_{(X-a)}/(X-a)$ $\mathbb{C}[X]_{(X-a)}$) zum Primideal (X-a) übereinstimmt.



AUFGABE 23.13. Es sei $f \in \mathbb{C}[X]$, $f \neq 0$, und $a \in \mathbb{C}$. Zeige, dass die folgenden "Ordnungen" von f an der Stelle a übereinstimmen.

- (1) Die Verschwindungsordnung von f an der Stelle a, also die maximale Ordnung einer Ableitung mit $f^{(k)}(a) = 0$.
- (2) Der Exponent des Linearfaktors X a in der Zerlegung von f.
- (3) Die Ordnung von f an der Lokalisierung $\mathbb{C}[X]_{(X-a)}$ von $\mathbb{C}[X]$ am maximalen Ideal (X-a).

AUFGABE 23.14. Bestimme ein Polynom $P \in \mathbb{C}[X]$ minimalen Grades, das an der Stelle 3 mit der Ordnung zwei verschwindet, das an der Stelle i mit der Ordnung fünf verschwindet und das an den Stellen 0, 3-2i und 7i einfach verschwindet.

AUFGABE 23.15. Es sei K ein Körper. Wir betrachten in K[X,Y] die beiden Primideale

$$\mathfrak{p} = (X) \subset (X,Y) = \mathfrak{m}.$$

Zeige, dass es kein Ideal $\mathfrak a$ mit

$$\mathfrak{p} = \mathfrak{a} \cdot \mathfrak{m}$$

gibt.

Aufgaben zum Abgeben

Aufgabe 23.16. (4 Punkte)

Sei $D \neq 1$ quadratfrei und $D = 1 \mod 4$. Finde in $\mathbb{Z}[\sqrt{D}]$ ein Primideal \mathfrak{p} derart, dass die Lokalisierung an \mathfrak{p} kein diskreter Bewertungsring ist.

Aufgabe 23.17. (4 Punkte)

Sei $R = \mathbb{Z}[\sqrt{-5}] = \mathbb{Z} \oplus \mathbb{Z}\sqrt{-5}$ der quadratische Zahlbereich zu D = -5. Betrachte in R die Zerlegung

$$2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

Zeige, dass die beteiligten Elemente irreduzibel, aber nicht prim sind, und bestimme für jedes dieser vier Elemente die Primoberideale. Bestimme die Hauptdivisoren zu diesen Elementen.

AUFGABE 23.18. (3 Punkte)

Sei R ein Zahlbereich und $f, g \in R$, $f, g \neq 0$. Zeige ohne Verwendung des Bijektionssatzes, dass die Hauptdivisoren $\operatorname{div}(f)$ und $\operatorname{div}(g)$ genau dann gleich sind, wenn f und g assoziiert sind.

Aufgabe 23.19. (3 Punkte)

Sei R ein Zahlbereich und sei $f \in R, f \neq 0$. Zeige die beiden folgenden Äquivalenzen:

Das Element f ist prim genau dann, wenn der zugehörige Hauptdivisor $\operatorname{div}(f)$ die Gestalt 1 \mathfrak{p} mit einem Primideal $\mathfrak{p} \neq 0$ besitzt.

Das Element f ist irreduzibel genau dann, wenn $\operatorname{div}(f)$ minimal unter allen effektiven Hauptdivisoren $\neq 0$ ist.

AUFGABE 23.20. (7 Punkte)

Sei $n \geq 2$ eine natürliche Zahl. Zeige, dass die folgenden Aussagen äquivalent sind.

- (1) n ist die Potenz einer Primzahl.
- (2) Der Restklassenring $\mathbb{Z}/(n)$ ist zusammenhängend.
- (3) Der Restklassenring $\mathbb{Z}/(n)$ ist lokal.
- (4) Die Reduktion von $\mathbb{Z}/(n)$ ist ein Körper.
- (5) Jeder Nullteiler von $\mathbb{Z}/(n)$ ist nilpotent.
- (6) Der Restklassenring $\mathbb{Z}/(n)$ besitzt genau ein Primideal.
- (7) Der Restklassenring $\mathbb{Z}/(n)$ besitzt genau ein maximales Ideal.

Abbildungsverzeichnis

Quelle = Brent method example.png , Autor = Benutzer Jitse Niesen auf Commons, Lizenz = gemeinfrei

3