Singularitätentheorie

Arbeitsblatt 27

AUFGABE 27.1. Was hat eine Entfaltung mit einer "Funktionenschar" zu tun?

AUFGABE 27.2. Bestimme die Rechtsäquivalenzklassen in der Entfaltung $tx^n + (1-t)x^m$ mit 1 = n < m.

Aufgabe 27.3.*

Wir betrachten Polynome $x^4 + ux^2 + vx$ mit Parametern $u, v \in \mathbb{C}$. Finde eine algebraische Bedingung an die Parameter u, v, die beschreibt, dass das Polynom einen ausgearteten kritischen Punkt besitzt.

AUFGABE 27.4. Es sei $f(x) = x^n$ mit $n \ge 1$. Wir betrachten die Entfaltung $x^n + w_{n-1}x^{n-1} + w_{n-2}x^{n-2} + \cdots + w_1x + w_0$ mit dem Deformationsparameter $(w_{n-1}, \ldots, w_0) \in \mathbb{C}^n$. Zeige, dass man den Term $w_{n-1}x^{n-1}$ "wegtransformieren" kann, dass es also eine Transformation (einen Koordinatenwechsel) derart gibt, dass man in der transformierten Situation ohne diesen Term auskommt, aber nach wie vor jede deformierte Funktion f_w vorkommt.

Was hat diese Beobachtung mit dem Jacobiideal und der Standardentfaltung zu tun?

AUFGABE 27.5. Es sei E(x, u, v) = x(x - u)(x - v), was wir als Entfaltung von x^3 auffassen.

- (1) Bestimme abhängig von $(u,v)\in\mathbb{C}^2$ die Milnorzahl von $f_{(u,v)}=E(-,u,v)$ im Nullpunkt x=0.
- (2) Welche Funktionen $f_{(u,v)}$ sind rechtsäquivalent zueinander?
- (3) Skizziere die Situation im (reellen) Parameterraum.

AUFGABE 27.6. Untersuche die Funktion XY - T als Entfaltung von XY. Welche deformierten Funktionen sind untereinander rechtsäquivalent?

Aufgabe 27.7.*

Es sei V ein endlichdimensionaler reeller Vektorraum und

$$F \colon V \longrightarrow V$$

ein stetig differenzierbares Vektorfeld. Es sei $C=C^{\infty}(V,\mathbb{R})$ die Menge der unendlich oft stetig differenzierbaren Funktionen von V nach \mathbb{R} . Wir betrachten die Abbildung

$$\delta = \delta_F \colon C \longrightarrow C, g \longmapsto \delta(g),$$

 $_{
m mit}$

$$(\delta(g))(P) = (D_{F(P)}g)(P).$$

Man erhält also aus der Funktion g die neue Funktion $\delta(g)$, indem man an einem Punkt $P \in V$ die Richtungsableitung der Funktion g in Richtung F(P) berechnet. Zeige, dass für $g \in C$ folgende Eigenschaften äquivalent sind.

- (1) Es ist $\delta(g) = 0$.
- (2) Das Bild einer jeden Lösung zur Differentialgleichung y' = F(y) liegt in einer Faser von g.

Aufgabe 27.8. Sei $b \geq 3$. Zeige, dass $X^3 + Y^b$ zu $X^3 + Y^b + X^4$ rechtsäquivalent ist.

AUFGABE 27.9. Wir betrachten $f=X^4+Y^7$. Für welche der folgenden h kann man mit Hilfe von Lemma 27.9 darauf schließen, dass f und f+h rechtsäquivalent sind?

$$(1) h = X^4 Y^7.$$

$$h = X^2 Y^8,$$

$$h = 5X^6 - X^4Y^5 - Y^{17}.$$

$$h = X^5 + Y^8.$$

Ist f rechtsäquivalent zu $X^4 + Y^7 + X^5 + Y^8$?

Abbildungsverzeichnis

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	3
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	3