Singularitätentheorie

Arbeitsblatt 21

AUFGABE 21.1. Zeige, dass zu $P \in V(X^a - Y^b)$ mit $a, b \geq 2$ und teilerfremd der lokale Ring $(K[X,Y]_{\mathfrak{m}_P}) / (X^a - Y^b)$ für P = (0,0) nicht regulär ist und für alle anderen Punkte regulär ist. Man gebe für P = (1,1) einen Erzeuger des maximalen Ideals an.

AUFGABE 21.2. Es sei $M\subseteq \mathbb{N}$ ein numerisches Monoid, das von teilerfremden Erzeugern erzeugt werde, es sei K[M] der Monoidring zu M über einem Körper K und es sei

$$R = K[M]_{\mathfrak{m}}$$

die Lokalisierung am maximalen Ideale $\mathfrak{m} = K[M_+] = \langle T^m, m \in M \rangle$. Zeige, dass R allein im Fall $M = \mathbb{N}$ ein diskreter Bewertungsring ist.

AUFGABE 21.3. Sei R ein diskreter Bewertungsring mit Quotientenkörper Q. Zeige, dass es keinen echten Zwischenring zwischen R und Q gibt.

AUFGABE 21.4. Sei K ein Körper und K(T) der Körper der rationalen Funktionen über K. Finde einen diskreten Bewertungsring $R \subset K(T)$ mit Q(R) = K(T) und mit $R \cap K[T] = K$.

Aufgabe 21.5.*

Es sei $P \in C = V(F) \subset \mathbb{A}^2_K$ ein glatter Punkt einer ebenen irreduziblen Kurve. Zeige, dass der zugehörige lokale Ring ein diskreter Bewertungsring ist.

Aufgabe 21.6.*

Sei K ein Körper und sei

$$\nu \colon (K^{\times}, \cdot, 1) \longrightarrow (\mathbb{Z}, +, 0)$$

ein surjektiver Gruppenhomomorphismus mit $\nu(f+g) \ge \min\{\nu(f), \nu(g)\}$ für alle $f, g \in K^{\times}$. Zeige, dass

$$R\,=\,\left\{f\in K^\times|\,\nu(f)\geq 0\right\}\cup\{0\}$$

ein diskreter Bewertungsring ist.

AUFGABE 21.7. Sei R ein diskreter Bewertungsring und sei $\mathfrak{m} = (\pi)$. Es sei $K = R/(\pi)$ der Restklassenkörper von R. Zeige, dass es für jedes $n \in \mathbb{N}$ einen R-Modulisomorphismus

$$(\pi^n)/(\pi^{n+1}) \longrightarrow K$$

gibt.

Aufgabe 21.8. Sei $R = K[X, Y, Z]_{(X,Y,Z)}$. Bestimme mit Hilfe von Lemma 21.4, ob die folgenden Restklassenringe $R/(f_1,\ldots,f_n)$ regulär sind (und von welcher Dimension).

- $(1) f_1 = 0.$
- (2) $f_1 = X + 3Y + Z^7 XYZ^2$. (3) $f_1 = XY + X^2 Y^3$.

- (4) $f_1 = X + Y^3$ und $f_2 = X + Z^5$. (5) $f_1 = 2X 3Y + Y^2Z XYZ$ und $f_2 = X + Z^4 Y^{17}$.
- (6) $f_1 = 2X 5Y + Z + XY Z^3$, $f_2 = X 3Y + Z + X^2Y^2Z^2$ und $f_3 = -3X + Z Z^2 XYZ^2$.

Aufgabe 21.9. Es sei R ein lokaler regulärer Ring der Dimension d mit maximalem Ideal $\mathfrak{m} = (x_1, \ldots, x_d)$. Zeige, dass

$$x^{\alpha} = x_1^{\alpha_1} \cdots x_d^{\alpha_d} = x_1^{\beta_1} \cdots x_d^{\beta_d} = x^{\beta}$$

nur bei $\alpha = \beta$ gilt.

AUFGABE 21.10. Bestimme ein minimales Erzeugendensystem für das maximale Ideal im lokalen Ring zum Punkt

$$(1,0,0,1) \in V(XY - UV) \subseteq \mathbb{A}_K^4.$$

Aufgabe 21.11. Es sei $V = V(\mathfrak{a}) \subseteq \mathbb{A}^n_K$ eine affin-algebraische Menge und $P \in V$ ein Punkt, in dem V die Dimension d besitzt. Es sei \mathcal{O}_P der lokale Ring zu P. Zeige, dass \mathcal{O}_P genau dann ein regulärer Ring ist, wenn es einen $(n-d)\text{-dimensionalen linearen Raum }L=V(\mathfrak{b})\subseteq \mathbb{A}^n_K$ derart gibt, dass im lokalen Ring die Beziehung

$$\mathfrak{a} + \mathfrak{b} = \mathfrak{m}_P$$

gilt.

Aufgabe 21.12. Es sei K ein Körper und $K[X_1, \ldots, X_n]$ der Polynomring über K. Zeige durch Induktion über n, dass jedes maximale Ideal in $K[X_1,\ldots,X_n]$ von n Elementen erzeugt wird.

Ein noetherscher kommutativer Ring R heißt $regul\"{a}r$, wenn jede Lokalisierung $R_{\mathfrak{m}}$ an einem maximalen Ideal \mathfrak{m} regul $\ddot{a}r$ ist.

AUFGABE 21.13. Es sei R ein regulärer lokaler Ring. Zeige, dass dann auch der Polynomring R[X] regulär ist.

AUFGABE 21.14. Es sei (R, \mathfrak{m}) ein noetherscher lokaler Integritätsbereich und M ein R-Modul. Der R/\mathfrak{m} -Vektorraum $M/\mathfrak{m}M$ und der Q(R) Vektorraum $M \otimes_R Q(R)$ habe die gleiche Dimension d. Zeige, dass M ein freier Modul vom Rang d ist.

Aufgabe 21.15. Sei p eine Primzahl und

$$K = \mathbb{Z}/(p)(U) \subseteq R = K[Y]/(Y^p - U).$$

Zeige, dass $R \cong K(Y)$ ist, dass R regulär ist und dass der Modul der Kähler-Differentiale $\Omega_{R|K}$ nicht frei ist.

Aufgabe 21.16. Betrachte die Körpererweiterung

$$\mathbb{Z}/(p) \subseteq \mathbb{Z}/(p)(X) \subseteq (\mathbb{Z}/(p)(X))[Y]/(Y^p - X)$$

zu einer Primzahl p.

- (1) Zeige, dass die hintere Körpererweiterung endlich, aber nicht separabel ist.
- (2) Zeige, dass $\{X\}$ eine Transzendenzbasis der Gesamterweiterung, aber keine separierende Transzendenzbasis ist.
- (3) Finde eine separierende Transzendenzbasis für die Gesamterweiterung.

Abbildungsverzeichnis

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	5
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	5