Singularitätentheorie

Arbeitsblatt 17

AUFGABE 17.1. Es sei $\mathfrak{a} \subseteq R$ ein Ideal in einem kommutativen Ring R. Zeige, dass die Multiplikation auf dem assoziierten graduierten Ring $\operatorname{Gr}_{\mathfrak{a}} R$ wohldefiniert ist.

AUFGABE 17.2. Sei $R = K[X_1, \ldots, X_n]$ der Polynomring über einem Körper K und $\mathfrak{a} = (X_1, \ldots, X_n)$. Zeige, dass der zugehörige assoziierte graduierte Ring isomorph zum Polynomring ist.

AUFGABE 17.3. Es sei p eine Primzahl und $R = \mathbb{Z}_{(p)}$ der zugehörige lokale Ring mit dem maximalen Ideal $\mathfrak{m} = (p)\mathbb{Z}_{(p)}$. Bestimme den assoziierten graduierten Ring zu \mathfrak{m} .

AUFGABE 17.4. Sei $\mathfrak{a}=(f_1,\ldots,f_n)\subseteq R$ ein Ideal in einem kommutativen Ring R. Zeige, dass durch

$$R/\mathfrak{a}[X_1,\ldots,X_n] \longrightarrow \operatorname{Gr}_{\mathfrak{a}} R, X_i \longmapsto [f_i],$$

wobei $[f_i]$ die Restklasse von f_i in $\mathfrak{a}/\mathfrak{a}^2$ bezeichnet, ein surjektiver graduierter R/\mathfrak{a} -Algebrahomomorphismus gegeben ist.

AUFGABE 17.5. Bestimme zu einer monomialen ebenen Kurve $V\left(X^a - Y^b\right)$ den assoziierten graduierten Ring $\operatorname{Gr}_{\mathfrak{m}} R$, mit $R = K[X,Y]/\left(X^a - Y^b\right)$ und $\mathfrak{m} = (X,Y)$.

Aufgabe 17.6. Sei $R=K[X_1,\ldots,X_n]/\mathfrak{b}$ und sei $\mathfrak{m}=(X_1,\ldots,X_n)$. Wir setzen

$$\varphi \colon K[T_1, \dots, T_n] \longrightarrow \operatorname{Gr}_{\mathfrak{m}} R, T_i \longmapsto \tilde{X}_i,$$

wobei \tilde{X}_i die Restklasse von X_i modulo \mathfrak{m}^2 bezeichnet. Sei $F \in \mathfrak{b}$ mit der homogenen Zerlegung

$$F = F_d + F_{d+1} + \dots + F_m \in K[X_1, \dots, X_n].$$

Zeige, dass $F_d(T_1, \ldots, T_n)$ zum Kern von φ gehört.

AUFGABE 17.7. Sei $R = K[X_1, \ldots, X_n]/\mathfrak{b}$ mit einem homogenen Ideal und sei $\mathfrak{m} = (X_1, \ldots, X_n)$. Zeige

$$\operatorname{Gr}_{\mathfrak{m}} R \cong R.$$

AUFGABE 17.8. Sei $R = K[X_1, ..., X_n]/(F)$ mit der homogenen Zerlegung $F = F_d + F_{d+1} + \cdots + F_m$ und sei $\mathfrak{m} = (X_1, ..., X_n)$. Zeige

$$\operatorname{Gr}_{\mathfrak{m}} R \cong K[T_1, \dots, T_n]/(F_d).$$

Sei R ein kommutativer Ring und $\mathfrak{a}\subseteq R$ ein Ideal. Zu einem Untermodul $U\subseteq V$ eines R-Moduls V bezeichnet man mit $\mathfrak{a}U$ den von allen Produkten

$$fv \text{ mit } f \in \mathfrak{a} \text{ und } v \in U$$

erzeugten Untermodul.

AUFGABE 17.9. Es seien $\mathfrak{a},\mathfrak{b}\subseteq R$ Ideale in einem kommutativen Ring. Zeige, dass das Idealprodukt \mathfrak{ab} mit dem Produkt \mathfrak{ab} aus dem Ideal \mathfrak{a} und dem R-Untermodul $\mathfrak{b}\subseteq R$ übereinstimmt.

AUFGABE 17.10. Es seien $\mathfrak{a}, \mathfrak{b} \subseteq R$ Ideale in einem kommutativen Ring und $U \subseteq V$ ein R-Untermodul eines R-Moduls V. Zeige

$$(\mathfrak{a} \cdot \mathfrak{b}) \cdot U = \mathfrak{a} \cdot (\mathfrak{b} \cdot U)$$
.

AUFGABE 17.11. Es seien $\mathfrak{a}, \mathfrak{b} \subseteq R$ Ideale in einem kommutativen Ring und sei $U \subseteq V$ ein R-Untermodul eines R-Moduls V. Zeige

$$(\mathfrak{a} + \mathfrak{b}) \cdot U = \mathfrak{a} \cdot U + \mathfrak{b} \cdot U.$$

AUFGABE 17.12. Es sei $\mathfrak{a} \subseteq R$ ein Ideal in einem kommutativen Ring und seien $U, W \subseteq V$ R-Untermoduln eines R-Moduls V. Zeige

$$\mathfrak{a} \cdot (U + W) = \mathfrak{a} \cdot U + \mathfrak{a} \cdot W.$$

AUFGABE 17.13. Es sei $\varphi \colon M \to N$ ein Homomorphismus zwischen den R-Moduln M und N und sei $\mathfrak{a} \subseteq R$ ein Ideal. Zeige, dass dies in natürlicher Weise zu einem homogenen Homomorphismus

$$\operatorname{Gr}_{\mathfrak{a}} M \longrightarrow \operatorname{Gr}_{\mathfrak{a}} N$$

führt.

AUFGABE 17.14. Es sei $F = F_m + \cdots + F_r$ die homogene Zerlegung eines Polynoms $F \in K[X_1, \ldots, X_n]$ mit $m \leq r$ und es sei $\mathfrak{m} = (X_1, \ldots, X_n)$. Zeige, dass für jedes $d \geq m$ die Multiplikationsabbildung

$$K[X_1,\ldots,X_n]\longrightarrow K[X_1,\ldots,X_n], G\longmapsto FG,$$

einen injektiven, wohldefinierten $K[X_1,\ldots,X_n]$ -Modulhomomorphismus

$$K[X_1,\ldots,X_n]/\mathfrak{m}^{d-m}\longrightarrow K[X_1,\ldots,X_n]/\mathfrak{m}^d$$

festlegt.

AUFGABE 17.15. Sei R ein kommutativer Ring und sei \mathfrak{a} ein Ideal mit dem Restklassenring $S = R/\mathfrak{a}$. Zeige, dass die Ideale von S eindeutig denjenigen Idealen von R entsprechen, die \mathfrak{a} umfassen.

AUFGABE 17.16. Sei R ein kommutativer Ring und sei \mathfrak{a} ein Ideal mit dem Restklassenring $S = R/\mathfrak{a}$. Zu einem Ideal $I \subseteq R$ welches \mathfrak{a} enthält, sei $I' = IR/\mathfrak{a}$ das zugehörige Ideal in S. Zeige, dass es eine kanonische Ringisomorphie

$$R/I \cong S/I'$$

gibt.

AUFGABE 17.17. Sei R ein kommutativer Ring mit zwei Idealen $\mathfrak{a}, \mathfrak{b} \subseteq R$. Es sei $S = R/\mathfrak{b}$ und $\tilde{\mathfrak{a}} = \mathfrak{a}S$ das Bildideal. Zeige, dass $\mathfrak{a}^n S = \tilde{\mathfrak{a}}^n$ ist.

AUFGABE 17.18. Sei R ein kommutativer Ring und sei N ein R-Modul mit R-Untermoduln $L\subseteq M\subseteq N$. Zeige, dass die Restklassenmoduln durch die kurze exakte Sequenz

$$0 \longrightarrow M/L \longrightarrow N/L \longrightarrow N/M \longrightarrow 0$$

miteinander in Beziehung stehen.

AUFGABE 17.19. Sei R ein kommutativer Ring und seien $I, J \subseteq R$ Ideale. Zeige, dass die Sequenz

$$0 \longrightarrow R/I \cap J \longrightarrow R/I \times R/J \longrightarrow R/I + J \longrightarrow 0$$

mit $r \mapsto (r, r)$ und $(s, t) \mapsto s - t$ exakt ist.

AUFGABE 17.20. Bestimme die Hilbert-Samuel-Multiplizität der zweidimensionalen ADE-Singularitäten.

AUFGABE 17.21. Es sei R ein noetherscher lokaler Ring mit Hilbert-Samuel-Multiplizität e. Bestimme die Hilbert-Samuel-Multiplizität des R-Moduls R^n .

AUFGABE 17.22. Es sei Δ ein simplizialer Komplex, $S = K[X_1, \ldots, X_n]/I_{\Delta}$ der zugehörige Stanley-Reisner-Ring und R die Lokalisierung von S am maximalen Ideal (X_1, \ldots, X_n) . Die Dimension von Δ sei d und Δ besitze k Facetten. Zeige, dass die Hilbert-Samuel-Multiplizität von R gleich k ist.

Aufgabe 17.23.*

Es sei

$$F = F_m + F_{m+1} + \dots + F_d \in K[X_1, \dots, X_n]$$

die homogene Zerlegung eines Polynoms und

$$R = \left(K[X_1, \dots, X_n]_{(X_1, \dots, X_n)} \right) / (F)$$

der zugehörige lokale Ring. Zeige, dass der Obergrad d keine Invariante des lokalen Ringes R ist.

AUFGABE 17.24. Es sei $V = V(XYZ) \subseteq \mathbb{A}^3_K$.

- (1) Bestimme die glatten Punkte von V.
- (2) Skizziere V und den singulären Ort von V.
- (3) Analysiere das Schnittverhalten von V mit beliebigen Ebenen.
- (4) Analysiere das Schnittverhalten von V mit beliebigen Geraden.
- (5) Berechne die Hilbert-Funktion des Koordinatenringes

für die Argumente $n \leq 4$.

(6) Was ist die Hilbert-Samuel-Multiplizität des lokalen Ringes

$$K[X,Y,Z]_{(X,Y,Z)}/(XYZ)$$
?

Abbildungsverzeichnis

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	5
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	5