Invariantentheorie

Vorlesung 24

Die Beziehung zwischen $SL_2(\mathbb{C})$ und $SO_3(\mathbb{R})$

Für die Klassifikation der endlichen Untergruppen der $SL_2(\mathbb{C})$ werden wir die platonische Klassifikation der endlichen Untergruppen der $SO_3(\mathbb{R})$ heranziehen. Die Beziehung zwischen diesen beiden Fragestellungen beruht darauf, dass einerseits die $SL_2(\mathbb{C})$ auf der komplex-projektiven Geraden $\mathbb{P}^1_{\mathbb{C}}$ und andererseits die Isometrien des \mathbb{R}^3 auf der 2-Sphäre $S^2 \subseteq \mathbb{R}^3$ operiert. Die Homöomorphie $\mathbb{P}^1_{\mathbb{C}} \cong S^2$ ermöglicht einen Zusammenhang zwischen diesen Gruppen und ihren endlichen Untergruppen.

Die projektive komplexe Gerade $\mathbb{P}^1_{\mathbb{C}}$ ist die Menge aller Geraden im \mathbb{C}^2 durch den Nullpunkt; sie ist topologisch betrachtet eine Sphäre S^2 . Diesen Zusammenhang kann man explizit machen, indem man als Zwischenschritt mit $\mathbb{C} \cup \{\infty\}$ arbeitet. Diese erweiterte komplexe Ebene steht einerseits mit der projektiven Geraden (\mathbb{C} ist eine affine Karte der projektiven Gerade, die den "unendlich fernen Punkt" ∞ nicht enthält) und andererseits mit der Sphäre über die stereographische Projektion in Bijektion (∞ entspricht dabei dem Nordpol).

Eine komplexe Zahl $u \in \mathbb{C}$ definiert die von $(u,1) \in \mathbb{C}^2$ erzeugte Gerade und damit den Punkt (in homogenen Koordinaten) (u:1) der komplexprojektiven Geraden $\mathbb{P}^1_{\mathbb{C}}$. Die Umkehrabbildung ist durch $(u:v) \mapsto \frac{u}{v}$ gegeben, die für $v \neq 0$ definiert ist. Dem Punkt (1,0) entspricht der unendlich ferne Punkt ∞ .

Die Umkehrabbildung der stereographischen Projektion ist die Abbildung

$$\mathbb{C} \cong \mathbb{R}^2 \longrightarrow S^2 \setminus \{N\} z = a + bi \longmapsto \frac{1}{1 + |z|^2}$$
$$\left(2\operatorname{Re}(z), 2\operatorname{Im}(z), |z|^2 - 1\right) = \frac{1}{1 + a^2 + b^2} \left(2a, 2b, a^2 + b^2 - 1\right).$$

Die Gesamtabbildung

$$\mathbb{P}^1_{\mathbb{C}} \setminus \{(1:0)\} \longrightarrow \mathbb{C} \longrightarrow S^2 \setminus \{N\}$$

besitzt insgesamt die Beschreibung

$$(u:v) \longmapsto \frac{1}{1+\left|\frac{u}{v}\right|^2} \left(2\operatorname{Re}\left(\frac{u}{v}\right), 2\operatorname{Im}\left(\frac{u}{v}\right), \left|\frac{u}{v}\right|^2 - 1\right).$$

Mit u = a + bi und v = c + di schreibt man dies (unter Verwendung von $|v|^2 = v\overline{v}$) als

$$\frac{1}{1 + \left|\frac{u}{v}\right|^2} \left(2 \operatorname{Re} \left(\frac{u}{v} \right), 2 \operatorname{Im} \left(\frac{u}{v} \right), \left| \frac{u}{v} \right|^2 - 1 \right)
= \frac{1}{\left| u \right|^2 + \left| v \right|^2} \left(2 \operatorname{Re} \left(u \overline{v} \right), 2 \operatorname{Im} \left(u \overline{v} \right), \left| u \right|^2 - \left| v \right|^2 \right)
= \frac{1}{a^2 + b^2 + c^2 + d^2} \left(2ac + 2bd, 2bc - 2ad, a^2 + b^2 - c^2 - d^2 \right).$$

Diese Formel zeigt, dass die Abbildung für alle $(u:v) \in \mathbb{P}^1_{\mathbb{C}}$ definiert ist, wobei (1:0) auf den Nordpol (0,0,1) abgebildet wird. Es liegt also eine explizite Bijektion $\mathbb{P}^1_{\mathbb{C}} \to S^2$ vor. Die Umkehrabbildung ist (für $(x_1,x_2,x_3) \neq (0,0,1)$ mit $x_1^2 + x_2^2 + x_3^2 = 1$) durch

$$(x_1, x_2, x_3) \longmapsto (x_1 + x_2i : 1 - x_3)$$

gegeben. Wenn man eine normierte Repräsentierung dieses Punktes erhalten möchte, so muss man durch $\sqrt{2-2x_3}$ dividieren.

Insbesondere erhält man eine explizite (in den natürlichen Topologien stetige) Abbildung

$$\mathbb{C}^2 \setminus \{(0,0)\} \longrightarrow S^2,$$

deren Fasern genau die punktierten komplexen Geraden sind.

Die natürliche Operation der $\operatorname{GL}_2(\mathbb{C})$ auf \mathbb{C}^2 - und das gilt auch für jede endliche Untergruppe $G\subseteq\operatorname{GL}_2(\mathbb{C})$ - induziert eine Operation auf der Menge der eindimensionalen Untervektorräume (also der komplexen Geraden durch den Nullpunkt) und damit auf $\mathbb{P}^1_{\mathbb{C}}$. Eine Gerade $H\subseteq\mathbb{C}^2$ wird durch $\sigma\in\operatorname{GL}_2(\mathbb{C})$ einfach auf die Bildgerade $\sigma(H)$ abgebildet. Eine Gerade $\langle (u,v)\rangle$ wird unter $\sigma=\begin{pmatrix}\ell&m\\n&p\end{pmatrix}$ auf die Gerade $\langle (\ell u+mv,nu+pv)\rangle$ abgebildet, bzw. in homogenen Koordinaten

$$(u:v) \longmapsto (\ell u + mv: nu + pv).$$

Dabei wirken Streckungen, also Abbildungen der Form $\binom{s}{0}$ mit $s \neq 0$, trivial auf der Menge der Geraden und auf der projektiven Geraden. Da man jede invertierbare Matrix als Produkt einer solchen Streckungsmatrix und einer invertierbaren Matrix mit Determinante 1 schreiben kann, muss man im Wesentlichen die Operation der $\mathrm{SL}_2(\mathbb{C})$ auf der projektiven Geraden verstehen. Die einzige Matrix $M \in \mathrm{SL}_2(\mathbb{C})$ neben der Einheitsmatrix, die sämtliche Geraden auf sich selbst abbildet, ist

$$-E_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} .$$

DEFINITION 24.1. Es sei K ein Körper und $n \in \mathbb{N}$. Die Restklassengruppe

$$\operatorname{SL}_n(K) / (K^{\times} \cdot \operatorname{Id} \cap \operatorname{SL}_n(K))$$

heißt projektive spezielle lineare Gruppe. Sie wird mit

$$\operatorname{PSL}_n(K)$$

bezeichnet.

Insbesondere ist $\operatorname{PSL}_2(\mathbb{C}) \cong \operatorname{SL}_2(\mathbb{C}) / \{\pm E_2\}$. Diese Gruppe operiert in natürlicher Weise treu und transitiv auf der projektiven Geraden. Mittels der obigen Identifizierung $\mathbb{P}^1_{\mathbb{C}} \cong S^2$ kann man die Operation der Gruppen (und Untergruppen) $\operatorname{GL}_2(\mathbb{C})$, $\operatorname{SL}_2(\mathbb{C})$, $\operatorname{PSL}_2(\mathbb{C})$ auf $\mathbb{P}^1_{\mathbb{C}}$ zu einer Operation dieser Gruppen auf der zweidimensionalen Sphäre übersetzen. Es stellt sich heraus, dass die zugehörigen Automorphismen im Allgemeinen nicht längentreu sind. Um dies zu erreichen, arbeiten wir mit der unitären Gruppen $\operatorname{SU}_2(\mathbb{C})$.

Satz 24.2. Es gibt einen surjektiven Gruppenhomomorphismus

$$SU_2(\mathbb{C}) \longrightarrow SO_3(\mathbb{R})$$
,

dessen Kern gleich

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

ist. Die Abbildung kann explizit (mit u = a + bi und v = c + di unter der Bedingung $a^2 + b^2 + c^2 + d^2 = 1$) durch

$$\begin{pmatrix} u & -\overline{v} \\ v & \overline{u} \end{pmatrix} \longmapsto \begin{pmatrix} a^2 + b^2 - c^2 - d^2 & 2(-ad + bc) & 2(ac + bd) \\ 2(ad + bc) & a^2 - b^2 + c^2 - d^2 & 2(-ab + cd) \\ 2(-ac + bd) & 2(ab + cd) & a^2 - b^2 - c^2 + d^2 \end{pmatrix}$$

realisiert werden.

Beweis. Es sei

$$\varphi \colon \mathbb{P}^1_{\mathbb{C}} \longrightarrow S^2$$

die explizite Homö
omorphie zwischen der komplex-projektiven Geraden und der 2-Sphäre
 S^2 . Durch

$$\operatorname{GL}_2(\mathbb{C}) \longrightarrow \operatorname{Aut}\left(S^2\right), \ \sigma \longmapsto \varphi^{-1}\sigma \circ \varphi,$$

erhält man einen Gruppenhomomorphismus der allgemeinen linearen Gruppe in die Gruppe der stetigen Automorphismen (also der Homöomorphismen) der Sphäre. Eine explizite Rechnung für $\sigma \in \mathrm{SU}_2(\mathbb{C})$ zeigt, dass der zugehörige Homöomorphismus von einer linearen Abbildung der angegebenen Gestalt herrührt. Zur Surjektivität Für v=0 und u=a+bi mit $a^2+b^2=1$ geht die Matrix links auf

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & a^2 - b^2 & -2ab \\ 0 & 2ab & a^2 - b^2 \end{pmatrix}.$$

Wenn man $s=\cos\alpha$ und $t=\sin\alpha$ vorgibt und $a=\frac{\sqrt{s+1}}{\sqrt{2}}$ und $b=\pm\frac{\sqrt{1-s}}{\sqrt{2}}$ setzt (das Vorzeichen ist geeignet zu wählen), so wird die Matrix zu

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix},$$

d.h. sie beschreibt die Drehung um den Winkel α um die x-Achse. Diese Drehung liegt also im Bild der Abbildung. Indem man die Rollen von a,b,c,d ändert, sieht man, dass auch die Drehungen um die beiden anderen Koordinatenachsen im Bild der Abbildung liegen. Nach Aufgabe 24.11 lässt sich jede Isometrie als eine Verknüpfung von Drehungen um die Koordinatenachsen erhalten. Also ist die Abbildung surjektiv. Zur Bestimmung des Kerns addieren wir jeweils die beiden Einträge der Matrix, die nicht auf der Diagonalen liegen und symmetrisch zur Diagonalen sind. Dies ergibt die Bedingungen bc = bd = cd = 0. Die Differenzen von je zwei Einträgen der Diagonalen ergibt die Bedingung $b^2 = c^2 = d^2 = 0$, woraus insgesamt b = c = d = 0 folgt. Die Bedingung $a^2 = 1$ führt dann zu den beiden Elementen im Kern.

Lemma 24.3. Das einzige Element aus $SU_2(C)$ der Ordnung 2 ist $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

Beweis. Sei

$$M = \begin{pmatrix} u & -\overline{v} \\ v & \overline{u} \end{pmatrix}$$

mit u = a + bi, v = c + di und mit $M^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Das bedeutet

$$\begin{pmatrix} u & -\overline{v} \\ v & \overline{u} \end{pmatrix} \begin{pmatrix} u & -\overline{v} \\ v & \overline{u} \end{pmatrix} = \begin{pmatrix} u^2 - v\overline{v} & -u\overline{v} - \overline{u}\overline{v} \\ uv + \overline{u}v & -v\overline{v} + \overline{u}\overline{u} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Wir nehmen zunächst $v \neq 0$ an. Daraus folgt $u + \overline{u} = 0$, also ist der Realteil von u gleich 0. Daher ist u imaginär und sein Quadrat ist negativ. Dann ist aber auch $u^2 - v\overline{v}$ negativ und nicht gleich 1. Also ist v = 0. Dann ist $u^2 = 1$ und somit ist $u = \pm 1$.

SATZ 24.4. Die endlichen Untergruppen der $\mathrm{SL}_2(\mathbb{C})$ sind bis auf Isomorphie (und bis auf Konjugation)

- (1) die endlichen zyklischen Gruppen Z_n ,
- (2) die binären Diedergruppen BD_n , $n \geq 2$,
- (3) die binäre Tetraedergruppe BT,
- (4) die binäre Oktaedergruppe BO,
- (5) die binäre Ikosaedergruppe BI.

Beweis. Nach Lemma 23.8 können wir davon ausgehen, dass $G \subseteq SU_2(\mathbb{C})$ ist. Es sei

$$\pi : \operatorname{SU}_2(\mathbb{C}) \longrightarrow \operatorname{SO}_3(\mathbb{R})$$

der surjektive Gruppenhomomorphismus aus Satz 24.2. Es sei $H = \pi(G)$ die Bildgruppe von G unter dieser Abbildung, für die es aufgrund von Satz 22.8 starke Einschränkungen gibt. Wenn #(G) ungerade ist, so enthält G kein Element der Ordnung 2. Also ist $G \cap (\ker \pi)$ trivial und somit ist $G \to H$ ein Isomorphismus. Aufgrund der Klassifikation für endliche Symmetriegruppen muss G zyklisch sein. Sei also #(G) gerade, sagen wir $\#(G) = 2^m u$ mit u ungerade. Nach dem Satz von Sylow besitzt G eine Untergruppe mit 2^m Elmenten und damit insbesondere auch ein Element der Ordnung 2. Wegen Satz 24.3 gibt es in $SU_2(\mathbb{C})$ nur das Element $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ der Ordnung 2. Also

ist $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in G$ und somit ist kern $\pi \subseteq G$. Damit ist insbesondere

$$G = \pi^{-1}(\pi(G))$$

d.h. G ist das Urbild zu einer endlichen Untergruppe $H \subseteq SO_3(\mathbb{R})$. H ist also eine der Untergruppen aus der Liste von Satz 22.8. Zwei isomorphe Gruppen $H_1, H_2 \subseteq SO_3(\mathbb{R})$ sind sogar konjugiert. Wenn $\alpha \in SO_3(\mathbb{R})$ den inneren Automorphismus stiftet und $\tilde{\alpha} \in SU_2(\mathbb{C})$ ein Urbild ist, so vermittelt $\tilde{\alpha}$ einen Isomorphismus der Urbildgruppen $\pi^{-1}(H_1)$ und $\pi^{-1}(H_2)$. Der Isomorphietyp von G ist also durch $\pi(G)$ festgelegt. Wenn $\pi(G) = D_n, T, O, I$ ist, so muss $G = BD_n, BT, BO, BI$ sein, da der Isomorphietyp festgelegt ist und die in den definierenden Beispielen Beispiel 23.2, Beispiel 23.4, Beispiel 23.3 und Beispiel 23.5 modulo dem Element der Ordnung 2 die entsprechenden reellen Symmetriegruppen ergeben.

Quotientensingularitäten

DEFINITION 24.5. Es sei K ein Körper und $G \subseteq \operatorname{GL}_n(K)$ eine endliche Untergruppe. Dann nennt man den Invariantenring $K[X_1, \ldots, X_n]^G$ (bzw. sein Spektrum) eine $Quotientensingularit \ddot{a}t$.

DEFINITION 24.6. Es sei K ein Körper und $G \subseteq \operatorname{SL}_n(K)$ eine endliche Untergruppe. Dann nennt man den Invariantenring $K[X_1, \ldots, X_n]^G$ (bzw. sein Spektrum) eine spezielle Quotientensingularität.

Diese beiden Definitionen umfassen als Extremfall auch die Situation, wo der Invariantenring regulär ist, also im strengen Sinn überhaupt keine Singularität vorliegt. Es kann sein, dass ein kommutativer Ring sowohl zum Invariantenring zu $G \subseteq GL_n(K)$, $G \not\subseteq SL_n(K)$, als auch zum Invariantenring zu $H \subseteq SL_n(K)$ isomorph ist. Ein Beispiel dafür ist der Polynomring selbst. Ein Beispiel für eine Quotientensingularität, die keine spezielle Quotientensingularität ist, ist der Veronesering $K[U, V]^{(k)}$, $k \geq 3$, den wir in Beispiel 9.12 vorgestellt haben. Wir haben bisher noch nicht gezeigt, dass diese für $k \geq 3$ nicht auch als ein Invariantenring zu einer Operation einer Untergruppe der speziellen linearen Gruppe realisiert werden kann. Dies wird sich als Nebenresultat der Berechnungen der nächsten Vorlesungen ergeben.