Invariantentheorie

Arbeitsblatt 8

Aufwärmaufgaben

Aufgabe 8.1. Seien $M \subseteq N$ kommutative Monoide. Zeige, dass durch

$$\tilde{M} = \{ n \in N | \text{ es gibt } k \in \mathbb{N}_+ \text{ mit } kn \in M \}$$

ein Untermonoid von N gegeben ist, das M umfasst.

AUFGABE 8.2. Wir betrachten die kommutativen Monoide $M=\mathbb{N}^r$ und $N=\mathbb{N}^s$. Zeige, dass ein Monoidhomomorphismus von M nach N eindeutig durch eine Matrix (mit r Spalten und s Zeilen) mit Einträgen aus \mathbb{N} bestimmt ist.

AUFGABE 8.3. Sei M ein kommutatives Monoid. Zeige, dass die zugehörige Differenzgruppe $\Gamma = \Gamma(M)$ eine kommutative Gruppe ist, und dass sie folgende universelle Eigenschaft besitzt: Zu jedem Monoidhomomorphismus

$$\varphi \colon M \longrightarrow G$$

in eine Gruppe G gibt es einen eindeutig bestimmten Gruppenhomomorphismus

$$\tilde{\varphi}\colon \Gamma \longrightarrow G$$
,

 $\operatorname{der} \varphi$ fortsetzt.

AUFGABE 8.4. Sei M ein kommutatives Monoid mit zugehöriger Differenzgruppe $\Gamma = \Gamma(M)$. Zeige, dass folgende Aussagen äquivalent sind.

- (1) M ist ein Monoid mit Kürzungsregel.
- (2) Die kanonische Abbildung $M \to \Gamma(M)$ ist injektiv.
- (3) M lässt sich als Untermonoid einer Gruppe realisieren.

AUFGABE 8.5. Sei R ein kommutativer Ring. Beweise die R-Algebraisomorphie

$$R[\mathbb{Z}^n] \cong R[X_1, \dots, X_n]_{X_1 \dots X_n}$$

mit Hilfe der universellen Eigenschaften von Monoidringen und Nenneraufnahmen.

Aufgaben zum Abgeben

Aufgabe 8.6. (4 Punkte)

Es sei K ein Körper und G eine Gruppe. Dann können wir den Monoidring K[G] betrachten. Sei nun weiter M ein K[G]-Modul. Zeige, dass

- (1) M nichts anderes ist als ein K-Vektorraum V zusammen mit einem Gruppenhomomorphismus $\rho: G \to \operatorname{Aut}_K(V)$.
- (2) ein K[G]-Modulhomomorphismus $\varphi: M \to M$ eine K-lineare Abbildung ist, für die zusätzlich $\varphi \circ \rho(g) = \rho(g) \circ \varphi$ für alle $g \in G$ gilt.

Bemerkung: ρ heißt dann eine *Darstellung* von G. Solche Darstellungen sind oft einfacher zu handhaben als G und man kann mit Hilfe von ρ oft hilfreiche Erkenntnisse über G selbst gewinnen.