Invariantentheorie

Arbeitsblatt 25

Aufwärmaufgaben

Aufgabe 25.1. Zeige, dass der Quotient

$$\frac{1-x_3}{x_1+x_2i}$$

für $x_1, x_2 \to 0$ und $x_3 = \pm \sqrt{1 - x_1^2 - x_2^2}$ gegen 0 konvergiert.

AUFGABE 25.2. Sei K ein algebraisch abgeschlossener Körper und sei $F \in K[X,Y]$ ein homogenes Polynom. Zeige: F zerfällt in Linearfaktoren.

Der in der Vorlesung verwendete Begriff einer Singularität wird durch folgende Definition präzisiert (es ist eher ein wichtiges Kriterium).

Es sei K ein algebraisch abgeschlossener Körper und seien $F_1, \ldots, F_s \in K[X_1, \ldots, X_n]$ Polynome mit der zugehörigen affinen Varietät

$$Y = V(F_1, \dots, F_s) \subseteq \mathbb{A}_K^n,$$

die irreduzibel sei und die Dimension d besitze. Es sei $P \in Y$ ein abgeschlossener Punkt. Dann heißt P ein $glatter\ Punkt$ von Y, wenn der Rang der Matrix

$$\left(\frac{\partial F_i}{\partial X_j}\right)_{i,j}$$

mindestens n-d ist. Andernfalls heißt der Punkt $singul\"{a}r$.

Die meisten Punkte einer affinen Varietät sind glatt, die singulären Punkte, wenn es sie denn gibt, bilden eine abgeschlossene Teilmenge, die der singuläre Ort von Y heißt. Die Varietät heißt glatt, wenn sie in jedem Punkt glatt ist.

AUFGABE 25.3. Zeige, dass der affine Raum \mathbb{A}^n_K über einem algebraisch abgeschlossenen Körper K glatt ist.

AUFGABE 25.4. Zeige, dass die Ringe $K[X,Y,Z]/(XY-Z^n)$ (mit $n \geq 2$) genau in P = (0,0,0) singulär sind.

AUFGABE 25.5. Zeige, dass die Ringe $K[X,Y,Z]/(X^2+YZ^2+Y^{m+1})$ (mit $m \ge 1$) genau in P = (0,0,0) singulär sind.

Aufgabe 25.6. Zeige, dass der Ring $K[X,Y,Z]/(X^2+Y^3+Z^4)$ genau in P=(0,0,0) singulär ist.

AUFGABE 25.7. Bestimme den singulären Ort von $K[X, Y, Z]/(X^2 + YZ^2)$.

AUFGABE 25.8. Bestimme den singulären Ort von $K[X,Y,Z]/(X^2+YZ^2+Z^n)$.

AUFGABE 25.9. Zeige explizit, dass der Ring $\mathbb{C}[X,Y,Z]/(X^2+YZ^2+Y^2)$ (also die Diedersingularität zu m=1) isomorph zu $\mathbb{C}[S,T,U]/(ST-U^4)$ ist.

Aufgaben zum Abgeben

AUFGABE 25.10. (10 Punkte)

Bestimme zu den endlichen Untergruppen $G \subseteq SU_2(\mathbb{C})$ die Halbachsenklassen auf S^2 und auf der projektiven Geraden $\mathbb{P}^1_{\mathbb{C}}$.

Aufgabe 25.11. (10 Punkte)

Bestimme zu den endlichen Untergruppen $G \subseteq SU_2(\mathbb{C})$ und zu jeder Halbachsenklasse ein zugehöriges semiinvariantes Polynom.