Invariantentheorie

Arbeitsblatt 13

Aufwärmaufgaben

AUFGABE 13.1. Sei R ein kommutativer Ring und \mathfrak{p} ein Ideal. Genau dann ist \mathfrak{p} ein Primideal, wenn der Restklassenring R/\mathfrak{p} ein Integritätsbereich ist.

AUFGABE 13.2. Sei \mathfrak{a} ein Ideal in einem kommutativen Ring R. Zeige, dass \mathfrak{a} genau dann ein Primideal ist, wenn \mathfrak{a} der Kern eines Ringhomomorphismus $\varphi \colon R \to K$ in einen Körper K ist.

Aufgabe 13.3. Zeige, dass ein Primideal ein Radikal ist.

AUFGABE 13.4. Es sei R ein kommutativer Ring und $I \subseteq R$ ein Ideal in R. Zeige, dass I genau dann ein maximales Ideal ist, wenn der Restklassenring R/I ein Körper ist.

AUFGABE 13.5. Seien R ein kommutativer Ring und sei $\mathfrak{a} \neq R$ ein Ideal in R. Zeige: \mathfrak{a} ist ein maximales Ideal genau dann, wenn es zu jedem $g \in R$, $g \notin \mathfrak{a}$, ein $f \in \mathfrak{a}$ und ein $r \in R$ gibt mit rq + f = 1.

Zeige (ohne Betrachtung von Restklassenringen), dass ein maximales Ideal ein Primideal ist.

AUFGABE 13.6. Sei R ein vom Nullring verschiedener kommutativer Ring. Zeige unter Verwendung des Lemmas von Zorn, dass es maximale Ideale in R gibt.

AUFGABE 13.7. Es sei R ein kommutativer Ring, $\mathfrak{a} \subseteq R$ ein Ideal und $M \subseteq R$ ein multiplikatives System mit $\mathfrak{a} \cap M = \emptyset$. Zeige mit dem Lemma von Zorn, dasss es dann auch ein Primideal \mathfrak{p} mit $\mathfrak{a} \subseteq \mathfrak{p}$ und mit $\mathfrak{p} \cap M = \emptyset$ gibt.

AUFGABE 13.8. Sei $\mathfrak a$ ein Radikal in einem kommutativen Ring. Zeige, dass $\mathfrak a$ der Durchschnitt von Primidealen ist.

Vor den nächsten Aufgaben erinnern wir an den Begriff eines lokalen Ringes und einer Lokalisierung.

Ein kommutativer Ring R heißt lokal, wenn R genau ein maximales Ideal besitzt.

Sei R ein kommutativer Ring und sei \mathfrak{p} ein Primideal. Dann nennt man die Nenneraufnahme an $S=R\setminus \mathfrak{p}$ die Lokalisierung von R an \mathfrak{p} . Man schreibt dafür $R_{\mathfrak{p}}$. Es ist also

$$R_{\mathfrak{p}} := \left\{ \frac{f}{g} | f \in R, g \notin \mathfrak{p} \right\}.$$

AUFGABE 13.9. Sei R ein kommutativer Ring. Zeige, dass R genau dann ein lokaler Ring ist, wenn a+b nur dann eine Einheit ist, wenn a oder b eine Einheit ist.

AUFGABE 13.10. Sei R ein kommutativer Ring und sei \mathfrak{m} ein maximales Ideal mit Lokalisierung $R_{\mathfrak{m}}$. Es sei \mathfrak{a} ein Ideal, dass unter der Lokalisierungsabbildung zum Kern gehört. Zeige, dass dann $R_{\mathfrak{m}}$ auch eine Lokalisierung von R/\mathfrak{a} ist.

AUFGABE 13.11. Beschreibe das Spektrum eines diskreten Bewertungsringes.

Aufgabe 13.12. Sei K ein Körper. Beschreibe das Spektrum von

$$K[X,Y]/(XY)$$
.

Aufgaben zum Abgeben

Aufgabe 13.13. (3 Punkte)

Sei R ein kommutativer Ring, sei $f \in R$ und sei \mathfrak{a} ein Ideal. Zeige, dass $f \in \mathfrak{a}$ genau dann gilt, wenn für alle Lokalisierungen $R_{\mathfrak{p}}$ gilt, dass $f \in \mathfrak{a}R_{\mathfrak{p}}$ ist.

Aufgabe 13.14. (5 Punkte)

Sei R ein kommutativer Ring und sei $\mathfrak p$ ein Primideal. Dann ist der Restklassenring $S=R/\mathfrak p$ ein Integritätsbereich mit Quotientenkörper Q=Q(S) und $R_{\mathfrak p}$ ist ein lokaler Ring mit dem maximalen Ideal $\mathfrak p R_{\mathfrak p}$. Zeige, dass eine natürliche Isomorphie

$$Q(S) \cong R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$$

vorliegt.

Den in der vorstehenden Aufgabe auf zweifache Weise konstruierten Körper nennt man auch den $Restek\"{o}rper$ in \mathfrak{p} . Er wird mit $\kappa(\mathfrak{p})$ bezeichnet.