Elemente der Algebra

Arbeitsblatt 7

Übungsaufgaben

AUFGABE 7.1. a) Zeige, dass ein Ideal in einem kommutativen Ring R eine Untergruppe von R ist.

- b) Zeige, dass für $R=\mathbb{Z}$ die Begriffe Untergruppe und Ideal zusammenfallen.
- c) Man gebe eine Beispiel für einen kommutativen Ring R und eine Untergruppe $U \subseteq R$, die kein Ideal ist.

Aufgabe 7.2. Es sei K ein Körper und $d \in \mathbb{N}$. Zeige, dass die Menge

$$\left\{ P = \sum_{i=0}^{n} a_i X^i \in K[X] | a_0 = a_1 = \dots = a_d = 0 \right\}$$

ein Ideal in K[X] ist. Ist es ein Hauptideal?

Aufgabe 7.3.*

Zeige, dass im Polynomring K[X,Y] über einem Körper K das Ideal (X,Y) kein Hauptideal ist.

AUFGABE 7.4. Es sei R ein kommutativer Ring und seien \mathfrak{a}_j , $j \in J$, eine Familie von Idealen. Zeige, dass der Durchschnitt $\bigcap_{j \in J} \mathfrak{a}_j$ wieder ein Ideal ist.

AUFGABE 7.5. Sei R ein kommutativer Ring und sei

$$\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \mathfrak{a}_3 \subseteq \dots$$

eine aufsteigende Kette von Idealen. Zeige, dass die Vereinigung $\bigcup_{n\in\mathbb{N}}\mathfrak{a}_n$ ebenfalls ein Ideal ist. Zeige ebenso durch ein einfaches Beispiel, dass die Vereinigung von Idealen im Allgemeinen kein Ideal sein muss.

Aufgabe 7.6. Sei R ein kommutativer Ring und $a,b \in R$. Zeige folgende Aussagen.

- (1) Das Element a ist ein Teiler von b (also a|b), genau dann, wenn $(b) \subseteq (a)$.
- (2) a ist eine Einheit genau dann, wenn (a) = R = (1).
- (3) Jede Einheit teilt jedes Element.
- (4) Teilt a eine Einheit, so ist a selbst eine Einheit.

Aufgabe 7.7. Sei R ein kommutativer Ring, $a_1, \ldots, a_k \in R$ und

$$\mathfrak{b} = (a_1) \cap (a_2) \cap \ldots \cap (a_k)$$

der Durchschnitt der zugehörigen Hauptideale und $r \in R$. Zeige, dass r ein gemeinsames Vielfaches von $a_1, \ldots, a_k \in R$ genau dann ist, wenn $(r) \subseteq \mathfrak{b}$ ist.

AUFGABE 7.8. Zeige, dass das Produkt von Hauptidealen wieder ein Hauptideal ist.

AUFGABE 7.9. Es sei R ein kommutativer Ring und sei M die Menge aller Ideale in R, die wir mit den beiden Verknüpfungen Summe von Idealen und Produkt von Idealen versehen. Welche Ringaxiome gelten dafür?

Aufgabe 7.10.*

Es seien I und J Ideale in einem kommutativen Ring R und sei $n \in \mathbb{N}$. Zeige die Gleichheit

$$(I+J)^n = I^n + I^{n-1}J + I^{n-2}J^2 + \dots + I^2J^{n-2} + IJ^{n-1} + J^n.$$

Ein homogenes Polynom $P \in K[X_1, ..., X_n]$ ist ein Polynom, bei dem alle beteiligten Monome den gleichen Summengrad besitzen.

AUFGABE 7.11. Sei R ein kommutativer Ring und $P = R[X_1, \ldots, X_m]$ der Polynomring darüber in m Variablen. Es sei $\mathfrak{m} = (X_1, \ldots, X_m)$ das von den Variablen erzeugte Ideal. Zeige, dass $\mathfrak{m}^n = P_{\geq n}$ ist, wobei $P_{\geq n}$ das Ideal in P bezeichnet, das von allen homogenen Polynomen vom Grad $\geq n$ erzeugt wird.

AUFGABE 7.12. Bestimme für \mathbb{Z} die Radikale, die Primideale und die maximalen Ideale.

Aufgabe 7.13. Bestimme in \mathbb{Z} das Radikal zum Ideal $\mathbb{Z}27$.

Aufgabe 7.14. Zeige, dass ein Primideal ein Radikal ist.

AUFGABE 7.15. Sei R ein Integritätsbereich und sei $0 \neq p \in R$ keine Einheit. Dann ist p genau dann ein Primelement, wenn das von p erzeugte Ideal $(p) \subset R$ ein Primideal ist.

AUFGABE 7.16. Es sei K ein Körper, K[X] der Polynomring über K und P = aX + b ein lineares Polynom $(a \neq 0)$. Zeige, dass das Hauptideal maximal ist.

AUFGABE 7.17. Es sei K ein Körper, K[X,Y] der Polynomring über K und $a,b\in K$ zwei Elemente. Zeige, dass die Menge

$$\mathfrak{m} = \{ P \in K[X, Y] | P(a, b) = 0 \}$$

ein maximales Ideal in K[X, Y] ist.

Aufgaben zum Abgeben

Aufgabe 7.18. (4 Punkte)

Zeige, dass im Polynomring $\mathbb{Z}[X]$ das Ideal (X, 5) kein Hauptideal ist.

Aufgabe 7.19. (4 Punkte)

Es sei $\mathfrak{a} \subseteq R$ ein Ideal in einem kommutativen Ring R. Zeige, dass die Potenzen \mathfrak{a}^n , $n \in \mathbb{N}_+$, alle dasselbe Radikal besitzen.

Aufgabe 7.20. (4 Punkte)

Sei R ein kommutativer Ring und sei $\mathfrak{a} \neq R$ ein Ideal in R. Zeige: \mathfrak{a} ist genau dann ein maximales Ideal, wenn es zu jedem $g \in R$, $g \notin \mathfrak{a}$, ein $f \in \mathfrak{a}$ und ein $r \in R$ gibt mit rg + f = 1.

Aufgabe 7.21. (4 Punkte)

Zeige, dass ein maximales Ideal $\mathfrak m$ in einem kommutativen Ring R ein Primideal ist.