< Reelle Zahlen < Rationale Cauchy-Folgen < Körper < Fakt
Beweis

Dass ein kommutativer Ring vorliegt, wurde schon in Fakt vermerkt. Wir müssen also noch zeigen, dass ein von verschiedenes Element ein inverses Element besitzt. Es sei eine Cauchy-Folge, die dieses repräsentiert. Diese Folge ist keine Nullfolge, da ja alle Nullfolgen unter der Restklassenabbildung auf das Nullelement abgebildet werden. Nach Fakt gilt somit eine der dort angegebenen Alternativen, d.h. es gibt ein und ein mit der Eigenschaft, dass für alle Folgenglieder entweder oberhalb von oder aber unterhalb von liegen. Betrachten wir den ersten Fall, wobei wir durch Abändern der ersten Folgenglieder, was die Äquivalenzklasse nicht ändert, annehmen können, dass alle Folgenglieder oberhalb von liegen. Nach Fakt ist dann die durch

gegebene inverse Folge ebenfalls eine Cauchy-Folge. Wegen

für alle ist auch

und somit ist eine inverse Klasse gefunden.

This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.