< Projektiver Raum < Kegelabbildung < Ist stetig

Definiere die Kegelabbildung

die einem vom Nullpunkt verschiedenen Punkt des affinen Raumes denjenigen projektiven Punkt zuordnet, der der Gerade durch den Punkt und dem Nullpunkt entspricht. Bestimme das Urbild einer offenen Menge des projektiven Raumes unter dieser Abbildung und zeige, dass sie stetig bezüglich der Zariski-Topologie ist.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.