< Inverse Matrix < 64 <
Aufgabe
(
1
12
0
3
0
1
0
0
2
)
{\displaystyle {}{\begin{pmatrix}1&12&0\\3&0&1\\0&0&2\end{pmatrix}}}
(
1
0
0
0
1
0
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}
(
1
12
0
0
−
36
1
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&12&0\\0&-36&1\\0&0&1\end{pmatrix}}}
(
1
0
0
−
3
1
0
0
0
1
2
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\-3&1&0\\0&0&{\frac {1}{2}}\end{pmatrix}}}
(
1
12
0
0
−
36
0
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&12&0\\0&-36&0\\0&0&1\end{pmatrix}}}
(
1
0
0
−
3
1
−
1
2
0
0
1
2
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\-3&1&-{\frac {1}{2}}\\0&0&{\frac {1}{2}}\end{pmatrix}}}
(
1
12
0
0
1
0
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&12&0\\0&1&0\\0&0&1\end{pmatrix}}}
(
1
0
0
1
12
−
1
36
1
72
0
0
1
2
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\{\frac {1}{12}}&-{\frac {1}{36}}&{\frac {1}{72}}\\0&0&{\frac {1}{2}}\end{pmatrix}}}
(
1
0
0
0
1
0
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}
(
0
1
3
−
1
6
1
12
−
1
36
1
72
0
0
1
2
)
{\displaystyle {}{\begin{pmatrix}0&{\frac {1}{3}}&-{\frac {1}{6}}\\{\frac {1}{12}}&-{\frac {1}{36}}&{\frac {1}{72}}\\0&0&{\frac {1}{2}}\end{pmatrix}}}
Zur gelösten Aufgabe
This article is issued from
Wikiversity
. The text is licensed under
Creative Commons - Attribution - Sharealike
. Additional terms may apply for the media files.