< Einheitswurzeln < Endliche kommutative Gruppe < Existenz
Es sei ein Körper und sei eine endliche kommutative Gruppe mit dem Exponenten . Zeige, dass folgende Aussagen äquivalent sind.
- besitzt eine -te primitive Einheitswurzel.
- Zu jedem Primpotenzteiler von besitzt eine -te primitive Einheitswurzel.
- Zu jedem Teiler von besitzt eine -te primitive Einheitswurzel.
- Zu jeder Ordnung eines Elementes besitzt eine -te primitive Einheitswurzel.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.