< Charaktergruppe < Charakter-Korrespondenz mit Kernen
Es sei eine endliche kommutative Gruppe und es sei ein Körper. Wir betrachten die Zuordnung
die einer Untergruppe von eine Untergruppe von zuordnet. Zeige die folgenden Aussagen.
a) Die Zuordnung ist inklusionsumkehrend.
b) Unter der kanonischen Abbildung
ist .
c) Es sei vorausgesetzt, dass eine -te primitive Einheitswurzel enthält, wobei der Exponent
von sei. Zeige, dass dann gilt.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.