< Binäre Ikosaedergruppe < Realisierung in SL2C
Es sei eine primitive -te komplexe Einheitswurzel. Wir setzen
Die von diesen Elementen erzeugte Untergruppe der heißt die binäre Ikosaedergruppe. Es ist
und somit besitzt die Ordnung . Wegen
besitzt die Ordnung . Ferner ist
Dabei ist
und (unter Verwendung von )
also ist
und die Ordnung von ist . Diese Gruppe besitzt Elemente und heißt die binäre Ikosaedergruppe, sie wird mit bezeichnet.
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.