< Wahrscheinlichkeitstheorie

Satz (Fast sichere Konvergenz impliziert Konvergenz in Wahrscheinlichkeit):

Es sei eine Folge von Zufallsvariablen, die fast sicher gegen eine Zufallsvariable konvergiert. Dann konvergiert auch in Wahrscheinlichkeit gegen .

Beweis: Definiere die Menge

.

Ferner setze

.

Die Mengenfolge ist absteigend, d. h. sie wird immer kleiner. ist sogar eine Nullmenge, denn wenn mit gegen konvergiert, dann ist falls hinreichend groß ist. Aufgrund der Stetigkeit der Wahrscheinlichkeit folgt

.

Aber

.
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.