| Maple Sheet Hauptverzerrungen |
|---|
|
Parametergleichung links |
|
X:=vector([R*cos(U)*cos(V),R*sin(U)*cos(V),R*sin(V)]); |
|
Parametergleichung rechts |
|
x:=vector([v*cos(u),v*sin(u)]); |
|
Gaußsche Tangentenvektoren |
|
links |
|
XU:=vector([diff(X[1],U),diff(X[2],U),diff(X[3],U)]); |
|
XV:=vector([diff(X[1],V),diff(X[2],V),diff(X[3],V)]); |
|
rechts |
|
xu:=vector([diff(x[1],u),diff(x[2],u)]); |
|
xv:=vector([diff(x[1],v),diff(x[2],v)]); |
|
erste Metriktensoren |
|
links |
|
Gl:=matrix(2,2): |
|
Gl[1,1]:=simplify(dotprod(XU,XU,'orthogonal')): |
|
Gl[1,2]:=simplify(dotprod(XU,XV,'orthogonal')): |
|
Gl[2,1]:=Gl[1,2]: |
|
Gl[2,2]:=simplify(dotprod(XV,XV,'orthogonal')): |
|
print(Gl); |
|
rechts |
|
Gr:=matrix(2,2): |
|
Gr[1,1]:=simplify(dotprod(xu,xu,'orthogonal')): |
|
Gr[1,2]:=simplify(dotprod(xu,xv,'orthogonal')): |
|
Gr[2,1]:=Gl[1,2]: |
|
Gr[2,2]:=simplify(dotprod(xv,xv,'orthogonal')): |
|
print(Gr); |
|
Abbildungsgleichungen |
|
fu:=U; |
|
fv:=2*R*tan(Pi/4-V/2); |
|
Linke Jacobimatrix |
|
Jl:=matrix(2,2): |
|
Jl[1,1]:=simplify(diff(fu,U)): |
|
Jl[1,2]:=simplify(diff(fu,V)): |
|
Jl[2,1]:=simplify(diff(fv,U)): |
|
Jl[2,2]:=simplify(diff(fv,V)): |
|
print(Jl); |
|
Rechte Jacobimatrix incomplete! substitution muss angepasst werden. Besser isses, Jacobi so aufzustellen. |
|
#Jr:=inverse(Jl); |
|
#for i from 1 to 2 do |
|
#for j from 1 to 2 do |
|
#Gr[i,j]:=subs(v=2*R*tan(Pi/4-V/2),Gr[i,j]); |
|
#od; |
|
#od; |
|
Cauchy Green Tensor |
|
#for i from 1 to 2 do |
|
#for j from 1 to 2 do |
|
Gr[i,j]:=subs(v=2*R*tan(Pi/4-V/2),Gr[i,j]); |
|
#od; |
|
#od; |
|
print(Gr); |
|
Cl:=evalm(transpose(Jl)&*Gr&*Jl); |
|
Hauptverzerrungen (Eigenwerte) bezüglich links |
|
lambda[1]:=sqrt(1/2*(trace(evalm(Cl&*inverse(Gl))) + sqrt(trace(evalm(Cl&*inverse(Gl)))^2 - 4*det(evalm(Cl&*inverse(Gl)))))); |
|
lambda[2]:=sqrt(1/2*(trace(evalm(Cl&*inverse(Gl))) - sqrt(trace(evalm(Cl&*inverse(Gl)))^2 - 4*det(evalm(Cl&*inverse(Gl)))))); |
|
Eigenvektoren |
|
EV[1]:=simplify(vector([(Cl[2,2]-lambda[1]^2*Gl[2,2])/sqrt( (Cl[2,2]-lambda[1]^2*Gl[2,2])^2*Gl[1,1] - 2*(Cl[1,2]-lambda[1]^2*Gl[1,2])*(Cl[2,2]-lambda[1]^2*Gl[2,2])*Gl[1,2] + (Cl[1,2]-lambda[1]^2*Gl[1,2])^2*Gl[2,2] ) , -(Cl[1,2]-lambda[1]^2*Gl[1,2])/sqrt( (Cl[2,2]-lambda[1]^2*Gl[2,2])^2*Gl[1,1] - 2*(Cl[1,2]-lambda[1]^2*Gl[1,2])*(Cl[2,2]-lambda[1]^2*Gl[2,2])*Gl[1,2] + (Cl[1,2]-lambda[1]^2*Gl[1,2])^2*Gl[2,2] )])); |
|
EV[2]:=simplify(vector([-(Cl[1,2]-lambda[2]^2*Gl[1,2])/sqrt( (Cl[1,1]-lambda[2]^2*Gl[1,1])^2*Gl[2,2] - 2*(Cl[1,2]-lambda[2]^2*Gl[1,2])*(Cl[1,1]-lambda[2]^2*Gl[1,1])*Gl[1,2] + (Cl[1,2]-lambda[2]^2*Gl[1,2])^2*Gl[1,1] ), (Cl[1,1]-lambda[2]^2*Gl[1,1])/sqrt( (Cl[1,1]-lambda[2]^2*Gl[1,1])^2*Gl[2,2] - 2*(Cl[1,2]-lambda[2]^2*Gl[1,2])*(Cl[1,1]-lambda[2]^2*Gl[1,1])*Gl[1,2] + (Cl[1,2]-lambda[2]^2*Gl[1,2])^2*Gl[1,1] )])); |
| Lade das Maple Sheet von http://www.wasdenktihr.de herunter! |