Formelsammlung Mathematik

Binomialkoeffizienten

n\k21 0 1234567 89101112
4 00141020355684120 165220286364455
3 001361015212836 4555667891
2 0012345678 910111213
1 0011111111 11111
  0 0 01000000000000
  1 001100000000000
  2 001210000000000
  3 001331000000000
  4 001464100000000
  5 00151010510000000
  6 001615201561000000
  7 0017213535217100000
  8 00182856705628810000
  9 00193684126126843691000
10 00110451202102522101204510100
11 0011155165330462462330165551110
12 001126622049579292479249522066121
13 001137828671512871716171612877152867813
14 0011491364100120023003343230032002100136491


Stirling-Zahlen erster Art

n\k 654321 0123456789
6 1000000000000000
5 15100000000000000
4 651010000000000000
3 902561000000000000
2 311573100000000000
1 1111110000000000
  0 0000001000000000
  1 0000000100000000
  2 0000000110000000
  3 0000000231000000
  4 00000006116100000
  5 00000002450351010000
  6 000000012027422585151000
  7 00000007201764162473517521100
  8 000000050401306813132676919603222810
  9 00000004032010958411812467284224494536546361


Stirling-Zahlen zweiter Art

n\k 654321 0123456789
6 1000000000000000
5 15100000000000000
4 851010000000000000
3 2253561000000000000
2 27450113100000000000
1 1202462110000000000
  0 0000001000000000
  1 0000000100000000
  2 0000000110000000
  3 0000000131000000
  4 0000000176100000
  5 0000000115251010000
  6 00000001319065151000
  7 000000016330135014021100
  8 00000001127966170110502662810
  9 000000012553025777069512646462361


Berechnung am Computer

FunktionMaximaGAP
Binomialkoeffizient binomial(n,k) Binomial(n,k)
Stirling-Zahl erster Art abs(stirling1(n,k)) Stirling1(n,k)
Stirling-Zahl zweiter Art stirling2(n,k) Stirling2(n,k)
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.